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Abstract: Label placement is a tedious task in map design, and its automation has long been a goal for researchers in 
cartography, but also in computational geometry. Methods that search for an optimal or nearly optimal solution that 
satisfies a set of constraints, such as label overlapping, have been proposed in the literature. Most of these methods 
mainly focus on finding the optimal position for a given set of labels, but rarely allow the removal of labels as part of 
the optimization. This paper proposes to apply an optimization technique called Reversible-Jump Markov Chain Monte 
Carlo that enables to easily model the removal or addition during the optimization iterations. The method, quite 
preliminary for now, is tested on a real dataset, and the first results are encouraging. 
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1. Introduction 
Text placement is one of the longest tasks in map design, 
and many proposals have been made to automate the 
process with optimization techniques (see an exhaustive 
review in Rylov & Reimer 2014). These methods are now 
quite effective, and they turn common quality criteria 
such as preferences on text position around the symbol, 
text overlaps with other map elements, or ambiguity 
between two labels, into numerical equations that are 
inserted into classical meta-heuristics such as simulated 
annealing to find the optimal placement. But most of 
existing techniques have one common drawback: the 
amount of labels to display is fixed at the beginning of 
the optimization. The optimized decision is the best 
position for the label, the label is never removed, even if 
there is no good location in the map. This paper proposes 
to use an optimization technique called RJMCMC for 
“Reversible-Jump Markov Chain Monte Carlo” (Green 
1995), able to include text placement and presence into 
the optimization. The second part of the paper briefly 
describes how we modelled label placement as a 
RJMCMC optimization, and the third part presents some 
preliminary results. 

2. Description of the Optimization Method 
The family of Reversible-Jump Markov Chain Monte 
Carlo optimization methods is composed of stochastic 
methods with a varying dimension solution space. 
Usually, stochastic optimization methods such as 
simulated annealing that was widely used in label 
placement (Barrault 2001), pick a label to displace (with 
varying randomness) and evaluate the global satisfaction 
of the system with this new location for the label, and the 
systems stops when an optimal solution is achieved. The 
evaluation is made with a cost or energy function that 
summarizes label position and the conflicts with other 
labels. The solution space is very large, and if we use the 
standard 8-position model for one label (see Fig. 1), it 
counts 8n configurations where n is the number of labels. 

With RJMCMC, we add, at each iteration, the possibility 
of “birth” or “death” for any label, reducing or increasing 
the dimension of the solution space. The global quality of 
the output is computed after each iteration, based on an 
energy function to minimize (Eq. 1). 

(Eq. 1)   
The unary energy sums for each label the satisfaction 
energy related to constraints that only affect one label, 
e.g. the position of the label around the point feature it 
labels. The binary energy sums for each label the 
satisfaction energy related to constraints of one label with 
its neighbors. For instance, the possible overlaps of two 
labels are evaluated by the binary energy. Finally, the 
collection energy is related to constraints on groups of 
labels, which allows, for instance, the preservation of 
density differences in the map. The use of three types of 
energies makes the process faster as when one label is 
displaced only the unary of this label, and the few binary 
and collection energies that involve this label are 
recomputed. 
We used the different criteria listed by Rylov & Reimer 
(2014) that summarize the existing literature: position 
around the point (adapted here with continuous positions, 
Fig. 1 and Eq. 2) as the unary energy, overlaps with map 
symbols, ambiguity with nearby labels as binary energies, 
and label density as a collection energy. In order to make 
the system remove some labels, the cost of position 
around the point is made negative: well-placed texts help 
minimizing the total cost, but removing a poorly placed 
text does not penalize too much global quality. This 
criterion is weighted by label importance to prevent the 
system from removing important labels.  
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 Fig. 1.  Modelling label placement priorities in the optimization 
model: (a) the position is encoded with an angle value and a 
radius that guarantees that the label is not too close or too far 
from the related point feature; (b) the classical 8-position 
priority model is used, and (c) translated into a continuous 
model where priority is interpolated using the angles. 

(Eq.2) 

 
The unary energy for label position uses a continuous 
model for label position (Fig. 1). We chose this model 
first because of the used implementation of RJMCMC 
(Brédif & Tournaire 2012) that requires real intervals to 
pick into rather than 8 integer values, and because it gives 
more flexibility to move a label, in order to avoid label 
overlaps. Eq. 2 shows the principles of this energy 
computation for the case of a label position between 
positions 1 and 7, and the interpolation is carried out 
similarly for the seven other quadrants. 

3. Preliminary Results 
We carried out experiments on a cartographic dataset that 
was generalized for 1:25k maps, but we tried to dis-play 
all the labels and the map at a smaller scale where the 
label bounding box covers more space and the need for a 
reduction of the number of labels is significant. The size 
of the text is intentionally large to force conflicts with 
many labels (Fig. 2). 

 
Fig. 2.  Initial text placement with everything at the top right 
position (184 labels) and the optimized placement on a 1:25k 
map (114 labels left @IGN). 

Fig. 3 shows a zoomed extract of the same dataset for a 
large number of iterations (60,000,000). The placement is 
clearly better with a significant number of labels removed 
but the result is not optimal. This can partly be explained 
by the caricatural size of the text, and its unique size: 
with only the main labels with this large size and smaller 
sizes to illustrate decreasing importance, there would be 
fewer conflicts to solve. However, this preliminary results 
shows that there is much to do to improve the proposed 
method. 

 
Fig. 3.  Zoomed extract of the test dataset for a large number of 
iterations (60,000,000) (@IGN). 

4. Conclusions 
The first results presented here are encouraging as the 
removal of some labels really improves map legibility. 
But there is still a lot to do to improve the method, by 
running more tests to tune the parameters and the criteria. 
For in-stance, it would be useful to compare the results of 
our RJMCMC optimization compared to a simulated 
annealing optimization with the same criteria and the 
same cost function. We also want to include text 
placement for linear (e.g. river names), and for areal (e.g. 
forest names) labels in the method that currently only 
considers point labels. We also plan to test the method on 
dense OpenStreetMap areas, because they may contain a 
huge number of named elements that can be displayed 
and the reduction of this number is mandatory. Finally, 
the optimization is quite slow for now, and we want to 
improve our heuristics (e.g. no need to search for 
overlaps with distant labels). 
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