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Abstract: This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty 
patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, 
Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map 
(OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-
product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by 
involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. 
Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a 
targeted knowledge discovery in areas with higher uncertainty values on the other hand. 
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1. Introduction 
Global land cover (GLC) is an important data source for 
environmental applications that helps us to understand the 
dynamic of our changing planet (Ban et al. 2015). Despite 
the development of remote sensing technology, the task 
of mapping and monitoring of our environment is still 
very challenging. Numerous efforts have led to GLC 
datasets of different resolutions such as GLC2000 (1km), 
GlobCover (300m), GLCF water mask (250m) and the 
latest publicly available GlobeLand30 (30m) produced by 
National Geomatics Center of China. Recent studies 
within the land cover community are increasingly 
committed to the validation of GlobeLand30 data 
(Brovelli et al. 2015, Sun et al. 2015, Arsanjani et al. 
2016). The validation results revealed an overall accuracy 
between 46% and 83% for different study areas. 
Obviously some areas have higher degree of uncertainty 
than other areas, which necessitates further quality 
improvements of the GlobeLand30 data. 
Due to multiple error sources and inaccuracies involved 
in data acquisition, processing and classification, the 
assigned land cover classes may differ from the ground 
truth and therefore they are uncertain. It is crucial to 
account for uncertainty that is useful for the evaluation of 
the data quality, decision-making practices and the 
creation of a general awareness. Apart from numerous 
definitions, we treat the uncertainty in this article as an 
indicator of distrust between the classified data in 
referenced datasets. Consequently, the higher the 
uncertainty, the more likely the actual land cover class of 
a particular location needs to be validated. Our work aims 
to model the GlobalLand30 data uncertainty based on 
probabilistic methods and to create a visualization 
support for the data refinement. We use the Bayesian 
Network framework for the uncertainty analysis of 
GlobeLand30 data. The Bayesian Networks are 

probabilistic graphical models that utilize probabilities 
obtained from the auxiliary data or expert notions to 
determine quantitative values of the uncertainty. In this 
work we focus on areas or GlobeLand30 classes that have 
higher degree of uncertainty. Volunteered geographic 
information (VGI), in particular, the Open Street Map 
(OSM) is adopted as an inexpensive auxiliary data 
source. In order to adapt the extracted dataset for our use 
case, we conducted a comprehensive analysis of the 
suitable OSM tags and assigned the closest GlobeLand30 
class code to the OSM tags in our study area. The 
resulting maps will then visually guide the experts or 
non-expert users to explore the areas where a high degree 
of mismatch between the GlobeLand30 results and OSM 
information occurs. 

2. Study Area and Data 
This research investigates uncertain areas of the Global 
Land Cover classification, adopting the datasets of 
GlobeLand30, CORINE and Volunteered Geographic 
data based on OpenStreetMap for the area of Upper 
Bavaria (German: Oberbayern), Germany. Even though, 
none of the reference data sets is ground truth, we 
perform the data fusion in order to reveal variations in the 
classification. The test area of Upper Bavaria was 
selected due to availability of high quality datasets. This 
could reduce the complexity of the analysis and provide a 
basis for the study case. Moreover, the test area reveals a 
sufficient diversity in distribution of land classes, thus 
provides a solid background for exploring probability of 
each land class. Although the three datasets are different 
from each other, they are unified to the resolution of 30m 
and land cover classification based on GlobeLand30 
schema. 

2.1 GlobeLand30 
In 2010 China launched a project with the aim to identify 
global land cover classes in resolution of 30 meters. The 
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GlobeLand30 data set is freely available and comprise 10 
major classes of land cover, including cultivated areas, 
forests, grassland, shrub land, wetland, water bodies, 
tundra, artificial surfaces, bare land and permanent snow 
and ice. The classification is available for two base-line 
years, 2000 and 2010. The GlobeLand30 was produced 
based on more than 20,000 Landsat and Chinese HJ-1 
satellite images (see www.globallandcover.com). 
Previous studies (Chen et al. 2015) indicate that the 
validation based on comparison with other data sets 
achieved an overall classification accuracy of over 80%. 
In the same time the GlobeLand30 data may show 
significant variation in different parts of the world and in 
some remote areas data presents the overall accuracy of 
46% (Sun et al. 2015). Such a difference is mainly due to 
the difficulty to distinguish some classes such as forest, 
shrub land and grassland as well as the low availability of 
reference data. For this reason, our approach will involve 
auxiliary data, including VGI data, in order to support 
analysis of uncertain areas. 

2.2 Open Street Map Land Cover 
Since the term Volunteered Geographic Information 
(VGI) was introduced by Goodchild (2007), 
knowledgeable amateurs have contributed large amounts 
of spatially referenced data to different web portals. The 
OpenStreetMap (OSM) (openstreetmap.org) is, without 
any doubt, the most wide spread and well recognized 
project. The database comprises vector data, which is 
attributed with a great variety of labels and might serve as 
source data for various cartographic products. Since 
every contributor can freely edit the database without 
supervision, the OSM data is heterogeneous in terms of 
quantity and quality. Assessing the accuracy of the OSM 
is, therefore, an essential task to facility the scientific 
usage of this data source. Several studies have reported 
some encouraging results in terms of the overall accuracy 
and completeness (Helbich et al. 2012, Neis et al. 2012). 
The validation of land cover classification requires 
manually labeled high-quality ground truth data for 
accuracy assessment. VGI-based approaches have been 
proposed and online communities, such as GEO-Wiki 
(Fritz et al. 2009, geo-wiki.org) are contributing data, 
specifically labeled for this task. Thus far, however, the 
coverage of the contributed data does not allow for 
exhaustive validation of large region datasets. In contrast 
to that, the OSM contributors are very actively collecting 
a broad range of thematic data with close to complete 
spatial coverage in certain areas (Ribeiro and Fonte 
2015). Thus, utilizing the OSM as a source for land cover 
ground truth data is a promising approach. Since the 
OSM data is not specifically tailored to the needs of land 
cover map validation, various methods for transforming 
the original data to a more suitable representation have 
been developed (Fonte et al. 2015). While only a portion 
of the OSM attributes is valuable for a derived land cover 
map, the coverage is still high enough to be usable, 
especially in urban areas (Ribeiro and Fonte 2015). 

 
Fig. 1.  Workflow used for creating land cover map from OSM 
data. 

In our research, we implemented a method for deriving a 
land cover reference map from the OSM database as 
shown in Fig. 1. In order to preserve the entire content of 
the database, we use a complete XML-encoded extract of 
the OSM database, representing our study area, instead of 
pre-processed Shapefiles, as suggested by Fonte et al. 
(2016). For an efficient processing of the large data 
amount, we use a PostGIS database for our experiments. 
For the derivation of the land cover map, a subset of the 
OSM tags, namely “amenity”, “building”, “historic”, 
“land use”, “leisure”, “natural”, “shop”, “tourism”, and 
“waterway” is considered. We define a mapping from the 
OSM attributes to the classes used in the GLC30 
classification scheme. The mapping is only conducted for 
polygon features, since point and line features do not 
provide immediate information about the coverage of an 
area. Exploiting additional information implicitly 
contained in point and line features, might be possible in 
general, using assumptions about specific feature classes, 
such as empirically determined road widths. In order to 
keep the used data as noise-free as possible, this was 
omitted in our experiments. In a final step, the vector data 
is rasterized to a 30 m grid with an appropriate Minimum 
Mapping Unit (MMU), merging small features with their 
neighboring features. The final OSM land cover map of 
our study area is shown in Fig. 2. The total coverage of 
our reference map is about 71% of the total study area. 
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Fig. 2.  Land cover map derived from XML-encoded extract of 
the OSM database. 

2.3 CORINE Land Cover - CLC2006 
The land cover mapping for the countries of European 
Union is realised within the programme CORINE 
(“Coordination of Information on the Environment”). 
Based on CORINE Land Cover 2000 for Germany, the 
data was updated and land cover product CLC2006 was 
produced as a vector database. According to Keil et al. 
(2011) the main data sources of the land cover and land 
use mapping were satellite images of Landsat 7 (for 
2000) and IRS-P6 LISS III as well as SPOT-4 and SPOT-
5. This product is following common European wide 
CLC nomenclature and consists of 44 classes, where 37 
classes are relevant for Germany. Therefore, CLC2006 is 
characterized as result of the GIS derivation considering 
the land cover changes. The CLC2006 has 25m of 
minimum mapping unit (MMU) for the polygons. The 
data is released in the projections of Gauss-Kruger Zone 
3, Gauss-Kruger Zone 4 or UTM Zone 32.  
Several authors (Gallego 2001, Brovelli et al. 2015, 
Arsanjani et al. 2016) have proposed to assess the land 
cover quality using CORINE datasets for different study 
areas. Arsanjani et al. (2016) studied the validation of 
GlobeLand30 against CORINE for the area of Germany 
and showed that overall accuracy is 92%. Another 
solution was described in Brovelli et al. (2015) who 
indicated that the overall accuracy values of third level 
CORINE Land Cover are generally higher than 80%. In 
both cases the validation was made using confusion 
matrix that represents comparisons of a land cover map 
against the referenced dataset. In our study CLC2006, 
further called CORINE, was used as a variable for 
constructing Bayesian Network. Therefore, the polygon 
map CLC2006 was gridded for use in the model with the 
grid cell larger than MMU. The resolution of the gridded 
map is 30m. Moreover, we scaled down the class 
complexity in order to provide consistent classification 
for all the data sources. That is to say, 44 CORINE land 

cover classes were assigned to 10 classes in line with the 
GlobeLand30 classification (see the Table 1). 
GlobeLand30 land cover 
classification  

CORINE 
Pixel values 

GlobeLand30 
Pixel values 

Cultivated 32 - 41 10 
Forest 42 - 45 20 
Grassland 46 - 47 30 
Scrubland 
Wetland 
Water bodies 
Tundra 
Artificial surface 
Bare land 
Permanent ice and snow 

48 – 49 
55 - 59 
60 - 64 

- 
21 – 31 
50 – 53 

54 

40 
50 
60 
70 
80 
90 

100 

 
Table. 1.  CORINE (CLC2006) reclassification based on the 
GlobeLand30 land cover definition. 

3. Methodology 
Land cover classes derived from the satellite imageries 
are commonly used for various environmental studies. 
However, due to errors involved in the data acquisition 
and processing, uncertainties are introduced.  The 
uncertainties of classified remote sensing data can be 
measured using different approaches such as comparison 
against ground truth, analysis of classification statistics 
(e.g., measures of separation in spectral space), 
comparisons between different land cover products 
(Quaife and Cripps 2016), or using an alternative method 
that involves Internet users for the data validation (Fritz 
et al., 2009). The scientific community proposes various 
methods to validate the classes and to model the quality 
and uncertainty. This article provides an approach of 
Bayesian Networks, which is widely used in diverse 
scientific domains such as medicine, weather forecasting 
and social science. Bayesian Networks have the property 
to address the spatial and temporal complexity of the 
dataset and produce reasoning based on evidences. 
Recently, Bayesian Networks are gaining importance for 
the quantitative and qualitative analysis of the remote 
sensing data (Quaife and Cripps 2016) because they are 
able to handle measurable information as well as 
qualitative criteria such as expert opinion or preferences 
based on the contribution of wide public of non-experts. 
The underlying mathematical model of a Bayesian 
network is based on components such as Directed 
Acyclic Graphs (DAG) and conditional probability tables 
(CPTs) (Darwiche 2008). The nodes in DAG represent 
random variables, such as land cover classifications, and 
arrows among them describe dependencies among these 
variables. The process is organised in one-way direction, 
so that the child doesn’t transfer any feedback to the 
parent. On this note, the Bayesian approach is able to 
model the proportions of true values in selected pixels at 
each location across the whole study area. The data 
analysis might include integration of multiple land cover 
data, auxiliary data sets and expert knowledge 
representing the data of same nature and study area using 
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consistent manner. The output of such evaluation consists 
of the probability maps and uncertainty information. 
Furthermore, this data might be visualized via geoportal, 
where the land cover data is disseminated or by means of 
stand-alone visualizations. 

 
Fig. 3.  Pipeline for using Bayesian Network. 

The procedure for using Bayesian Network is depicted in 
Fig. 3. The graphical model defines the probability 
relations among the variables. In this research we treat 
the land cover classification GlobeLand30, CORINE and 
land cover derived from VGI data, namely OSM, as 
variable for the constructing Bayesian Network. We 
assume that all these three datasets are potentially 
misclassified, therefore each classification can be 
described in relation with other, assigning prior 
probabilities of each class. If we consider one of the 
variable (land cover classification) that doesn’t have a 
parent node, the prior probability for this variable is 
assigned based on the possible values: 𝑃𝑃 (𝑋𝑋𝑖𝑖  =  𝑥𝑥𝑖𝑖), 
where 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛 are all possible values (i.e., 
instantiations) of variable 𝑋𝑋𝑖𝑖. The nodes at the next level 
have parents, therefore the conditional probability is 
assigned. Hence, each variable is described by the 
probability under the state of its parent. If 𝑥𝑥𝑖𝑖indicates the 
values of variable 𝑋𝑋𝑖𝑖  and 𝜌𝜌𝜌𝜌𝑖𝑖  indicated the set of values 
for Xi’s parents, then 𝑃𝑃(𝑥𝑥𝑖𝑖|𝜌𝜌𝛼𝛼𝑖𝑖)  indicates the conditional 
probability, for example 𝑃𝑃 (𝑋𝑋3  =  𝑥𝑥3 |𝑋𝑋1  =  𝑥𝑥1, 𝑋𝑋2  =
 𝑥𝑥2). 
 
Based on the probability theory the conditional 
probability is  
𝑃𝑃(𝑎𝑎|𝑏𝑏) =  𝑃𝑃(𝑎𝑎 |𝑏𝑏) 𝑃𝑃(𝑏𝑏)⁄   or    𝑃𝑃(𝑎𝑎, 𝑏𝑏) =  𝑃𝑃(𝑎𝑎 |𝑏𝑏) ⋅ 𝑃𝑃(𝑏𝑏), 
(1) 
 
Where 𝑃𝑃 (𝑎𝑎, 𝑏𝑏) is a joint probability of event 𝑎𝑎 ⋀ 𝑏𝑏. 
Therefore, 
         𝑃𝑃(𝑎𝑎 |𝑏𝑏) ⋅ 𝑃𝑃(𝑏𝑏) =   𝑃𝑃(𝑏𝑏|𝑎𝑎)𝑃𝑃(𝑎𝑎)         (2)                                      
        𝑃𝑃(𝑎𝑎 |𝑏𝑏) =  𝑃𝑃(𝑏𝑏|𝑎𝑎) ⋅ 𝑃𝑃(𝑎𝑎) 𝑃𝑃(𝑏𝑏)⁄          (3) 
 
Equation 3 is the main concept supporting the Bayesian 
Networks modelling. Using this equation the probabilities 
of event P(a) can be updated based on the new evidence 
related to event b. Hence, based on the Bayesian theory it 
is possible to update the knowledge of a land cover class 
considering new/additional evidence (conditional 
probability). The reasoning is based on the degree of 
belief (posteriori probability). 

 
  

 
Fig. 4.  Probability maps of cultivated and artificial land cover 
classes. 

 
Fig. 5.  Uncertainty (Shannon Index) map based on the data 
fusion of GlobeLand30, CORINE and land cover derived from 
OSM data. 

Moreover, the effectiveness of the Bayesian Networks 
lies also in the ability to compute the conditional 
probability of the descendant nodes as well as parent 
nodes. One of the challenges when applying BN is to 
define the probability functions. This can be made via 
discretization process where the values of a variable are 
represented by discrete quantities. Therefore the range of 
the values is split into intervals defined by the land cover 
classification. The simulation was realized using R 
statistics and package for the spatial implementation of 
Bayesian Networks and mapping “bnspatial”. The outputs 
of the simulation processes are the expected state of 
target node (i.e. the state with the highest relative 
probability) and the uncertainty, expressed as entropy by 
the Shannon index. The example of the output maps is 
illustrated in the Fig. 4 and 5. 

4. Results 
The Bayesian Networks are an effective technique for the 
analysis of remote sensing data, especially for the 
reasoning based on diverse sources with varying degrees 
of reliability. The outputs of this research work are 
posterior probability maps, and the map of uncertainty 
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measured as Shannon index (entropy) (see the figure 3). 
The maps of posterior probability depict updated prior 
probability of land cover class occurrence considering the 
information from different input datasets. The map of 
uncertainty was elaborated to depict the diversity in the 
data and it illustrates Shannon entropy applied for the 
land cover classification. Therefore, the latter map shows 
the amount of various information that each location 
might be assigned to. The aim of the output maps is to 
highlight the areas with the highest degree of the 
ambiguity and provide visual guidance for the further 
land cover validation as well as for a deeper 
understanding of the dynamics related to the high 
uncertainty. As it can be seen from the Fig. 6, the 
uncertainty of a polygon is high, and when we compare to 
the original data sets, it is evident that the highlighted 
area was defined in inconsistent manner. Hence, the 
attention for the validation should be placed at such areas. 
Moreover, such data may be utilized to guide the 
implementation of decision support tools.  

 
Fig. 6.  Interpretation of uncertain areas based on land cover 
classification from GlobeLand30, CORINE (CLC2006) and 
Open Street. Map. 

5. Conclusion 
The proposed approach offers a technique for the 
identification of uncertain areas associated with the 
output from each additional source that can be further 
visualized within a geoportal of GlobeLand30. The 
available uncertainty information may guide the quality 
improvement of GlobeLand30 by involving the ground 
truth data, information with superior quality, the know-
how of experts and the crowd intelligence. This may 
finally pave a way towards a seamless validation of 
global land cover data, which is beyond the current 
validation approach by image processing experts using a 
limited amount of sample data for selected regions. 
Moreover, it will trigger a targeted knowledge discovery 
in the areas with higher uncertainty values. 
Based on the results we see a possible solution in using 
statistical methods of data fusion to discover uncertain 
information. The originality of our approach lies in using 
the Bayesian Networks technique for analysis of global 
land cover data along with the data derived from VGI, 
namely OSM. This study shows that Bayesian Networks 
with multiple datasets have potential to reveal the hidden 
patterns that cannot be found by linear processing. 
However, the findings have number of possible 
limitations, namely the quality of existent reference data, 
quality of volunteered contributions to the OSM and prior 
expert knowledge about the used data. Therefore, due to 

the mentioned shortcomings, we cannot claim that the 
results highlight misclassified areas. However, the 
discovered patterns show higher degree of entropy and 
enable visual guidance for data exploration. The data 
obtained indicate that the more precise the prior expert 
knowledge and the higher data quality of the referenced 
datasets, the better results could be achieved. Therefore, 
under ideal conditions, the GLC classification could be 
significantly improved.   
Further research is needed to develop an application for 
the visual and analytical reasoning under uncertainty of 
land cover classification. Much research addressed the 
issue of data uncertainty and its signification. Therefore 
different visualization techniques were implemented and 
tested for a variety of data types. However, it was 
addressed by MacEachren (2015) that just little attention 
has been given to reasoning/decision-making under 
uncertainty. The Bayesian approach can integrate 
different GIS layers and the expert knowledge to analyse 
probability of each class occurrence and its related 
uncertainty. Therefore beyond the data fusion and data 
visualisation, the further work will contribute with the 
decision-making environment for the remotely-sensed 
data analysis. 
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