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Abstract: In this paper, several supervised machine learning algorithms were explored to define homogeneous regions 
of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study 
was focused on finding the primary environmental parameters related to uranium in ground waters using several 
methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial 
Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and 
Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly 
improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and 
autocorrelation in spatial data. 
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1. Introduction 
One of the main components of ecological conditions in 
Ukraine is the radioactivity of natural waters associated 
with natural and anthropogenic factors. Surface and 
ground waters are important resources of drinking water. 
Several areas in Ukraine have high concentrations of 
natural uranium, so surface and groundwater in these 
areas can be potentially unsafe as a source of drinking 
water. Concentrations of uranium of 0.08 Mg/L and 
higher are potentially dangerous to human health, 
therefore, investigation of the impacts of uranium on 
groundwater (and thus, on the quality of drinking water) 
is an important scientific problem.  
The goal of this study is to explore the application of 
several supervised machine learning algorithms to define 
homogeneous regions of concentration of uranium in 
surface waters in Ukraine using labeled training data and 
multiple environmental variables. In this study, 
regionalization is defined as a generalization of properties 
of a phenomenon throughout space, based on a set of 
training examples and a set of various observations. The 
regionalization of Ukraine by the concentration of 
uranium in groundwater allows defining quality standards 
for drinking water for the acceptable content of uranium 
and associated elements. Also, the regionalization can be 
used as a new approach to conducting geological work to 
search for mineral deposits. 

2. Methodology 
To enhance and validate the proposed in previous studies 
regionalization models, the authors explore several 
methods of supervised learning, including Artificial 
Neural Networks techniques such as Multilayer 
Perceptron (MLP) and Radial Basis Function (RBF) 

networks as functions of environmental parameters which 
minimize the prediction error of dependent variable 
defined group membership. Convolutional Neural 
Network (CNN) which is a relatively new enhanced 
version of MLP, has also been explored (Haykin 2011, 
Goodfellow et al. 2016).  
A Multilayer Perceptron (MLP) is the type of ANN that 
contains one or more hidden layers of neurons or nodes 
(apart from one input and one output layer). MLP learns 
or is trained by using the backpropagation algorithm that 
is a supervised training scheme from labeled training 
data. Conventional MLP can be applied to perform 
regionalization of spatial data without modification. 
However, spatial data require some treatment of spatial 
autocorrelation and nonstationarity.  
There are at least three spatially-based clustering 
approaches which take into account the spatial effect 
(Simba-han and Dobermann 2006, Hu and Sung 2004). 
The first approach is to add spatial information into 
datasets. The simplest way is to use geographic 
coordinates as additional classification variables and 
achieve spatial contiguity by assigning an appropriate 
weight to the geographic coordinates (Webster and 
Burrough, 1972, Govorov, 1986). In spatially weighted 
classification, the principal coordinates of dissimilarity 
matrices are modified spatially, which then can be used to 
create classifications. The dissimilarity measure can be 
weighted as a function of the geographic separation 
between individuals to ensure spatial continuity of the 
formed clusters, for example, incorporation of known 
autocorrelation among data from uni- or multivariate 
variograms into their spatial classification (Bourgault et 
al., 1992). Principal component semivariograms can be 
used instead of variable-specific semivariograms.  
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The second approach is modifying existing algorithms, 
e.g., contiguity-constrained classification. Spatial 
contiguity can be modeled by creating a set (or cluster) of 
neighbors for each sample point. Contiguity-constrained 
classification imposes a constraint, which determines 
individuals or groups that can be joined to form a cluster 
(Openshaw, 1977, Ferligoj and Batagelj, 1982, Davidson 
and Basu 2007, Duque 2007). The third approach is to 
build a model that encompasses spatial information. 
In terms of MLP models, the first and second approaches 
can be used to incorporate spatial information into the 
network propagation. Thus, weighted coordinate values 
can be used as independent variables, as well as input 
independent variables can be spatially weighted, e.g., 
each input can be recalculated based on the weighted 
average of its neighbors and used as new inputs to a 
conventional MLP network. As an alternative to input 
filtering on independent variables, conventional MLP 
network can be trained, and then predicted values from 
the MLT output lay-er can be modified based on a spatial 
filter, similar to post-classification smoothing (Simbahan 
and Dobermann, 2006). 
One more approach to consider spatial effect in the MLP 
model is to incorporate spatial autocorrelation into the 
hidden layer(s) by modifying input associated weights 
that are used to output from hidden layer to output layer. 
Each input has an associated weight, which is assigned on 
the basis of its relative importance to other inputs. The 
goal of learning is to assign correct weights for the 
connections between neurons of adjacent layers. 
Conventionally all the neuron connection weights are 
randomly assigned. To train a network, the ANN is 
activated for every input in the training data set and 
calculates its output by using an activation function. An 
activation function can be modified to consider 
autocorrelation between the neighboring neurons. This 
output is compared with the known labeled output, and 
the error is propagated back to the previous layer. The 
weights are adjusted accordingly to this error by using an 
optimization method. This process is repeated until the 
output error is below a predetermined thresh-old. Then 
the trained network can be used to classify new inputs. 
Another ANN model, which can be used for spatial 
classification, is radial basis function networks (RBF net-
works) (Yee and Haykin 2001, Que and Belkin 2016). A 
special class of radial function can be employed as 
activation function in a single or multi-layer network. 
Traditionally, RBF is used in a single layer network 
where the optimal subset of radial basis functions is used 
for activation in forward selection. Activation process fits 
radial basis functions with weight to the hidden layer's 
outputs with respect to some objective function. The 
output of the net-work is a linear combination of radial 
basis functions of the inputs and neuron parameters. A 
backpropagation step can be performed to adjust the RBF 
network parameters.  
Conventional RBF networks assume the independent and 
identical distribution of input variables. To work with 
spatial data, RBF can be adjusted by using similar 

approaches as for MLP model: by filtering data values of 
input or output layer; by incorporating spatial 
autocorrelation into the output weight from hidden radial 
basis layer by modifying the linear combination of RB 
functions. RB functions can be modified similarly to 
spatial econometrics autoregressive models to model 
substantive spatial dependence (Anselin 1995). 
MLP and RBF are fully-connected networks where each 
neuron is connected to every neuron in the previous layer, 
and each connection has its own weight. This is a general 
purpose connection pattern and makes no assumptions 
about the autocorrelation in the spatial data. For cases 
where the data can be interpreted as spatially correlated, 
Convolution Neural Networks (CNN) can be employed. 
CNN intends to use spatial information between the 
neighboring neurons are based on discrete convolution 
(Zeiler and Fergus 2013). 
CNN may have any number of convolution, 
normalization and pooling layers after the input layer. 
The output from the last pooling layer acts as an input to 
the fully connected layer of CNN. The convolu-
tion/normalization/pooling layers act as a filter(s) for 
object extraction from the input data while fully 
connected layer acts as a classifier. Formally, CNN is 
similar to MLP or RBF where the input data are spatially 
filtered, or thus fully connected layer is a convolutional 
layer with filter size equal to input size. 
However, in a convolutional layer, each neuron is only 
connected to a few neighboring neurons in the previous 
layer, and weights are assigned only to this local 
connections. Convolution preserves the spatial 
relationship be-tween neurons. During the training 
process, CNN learns its weights and filter values and then 
adjusting them during backpropagation process. 
However, CNN parameters such as the number of filters, 
filter sizes, the architecture of the network etc. have all 
been fixed and do not change during the training process. 
Filters with different sizes can be used for different 
spatial locations.  
CNN can be applied not only on regular raster data but 
also irregular point data where natural neighbors can be 
found e.g. based on Delaunay triangulation and used on 
the convolution steps to extract features from the input 
data. 

3. Case Study 
In the previous studies (Govorov et. al 2016), the authors 
used several spatial statistical methods including 
exploratory spatial data analysis, global and local factor 
analysis (proposed geographically weighted factor 
analysis), correlation and regression analysis 
(geographically weighted correlation and regression 
analysis), autoregressive models of spatial econometrics 
were utilized to describe the impact of several 
environmental variables on spatial distribution of 
uranium (U) in ground water. As the result, it was found 
that concentration of uranium has a strong local 
correlation with precipitation, humus, the hardness of 
water, F, Fe, SO4 and As. These first six most significant 
predictors contribute 60.79% into the overall regression 
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model (Table 1). Since some of these source variables are 
dependent the principal components of these variables 
can be used for analysis. 

Model Predictors R R 
Square 

Adjusted 
R Square 

Std. 
Error of 

the 
Estimate 

1 precipitation 0.510 0.260 0.260 1.1611 

2 1 + humus 0.595 0.354 0.354 1.0849 

3 2 + water 
hardness 0.623 0.388 0.387 1.0564 

4 3 + F  0.629 0.396 0.395 1.0496 

5 4 + Fe  0.634 0.402 0.402 1.0438 

6 5 + As  0.637 0.405 0.405 1.0414 

7 6 + SO4 0.638 0.407 0.407 1.0395 

8 7 + isopach  0.641 0.411 0.410 1.0368 

9 8 + NH4  0.642 0.413 0.412 1.0351 

10 9 + Cl 0.644 0.415 0.414 1.0332 

11 10 + 
temperature  0.645 0.416 0.415 1.0325 

12 11 + NO3  0.645 0.417 0.416 1.0317 

13 12 + HCO3 0.646 0.418 0.416 1.0310 

14 13 + Zn 0.647 0.418 0.417 1.0305 

15 14 + Cu 0.647 0.419 0.418 1.0300 

16 15 + PO4 0.648 0.419 0.418 1.0296 

17 16 + 
mineralization 0.648 0.420 0.419 1.0288 

 
Table 1. Multiple regression U vs. 17 variables model summary  

Then, several unsupervised machine learning algorithms 
were explored to define homogeneous regions of con-
centration of uranium in ground waters using multiple 
environmental parameters. At this step, cluster analysis 
was carried out using techniques of bivariate local pattern 
analysis, spatially weighted classification and spatially 
contiguous clustering of multivariate data or 
unsupervised learning, and techniques from the domain 
of artificial neural network, specifically Kohonen Self-
Organizing Maps was used (Kohonen, 2001).  
Combining techniques of hierarchical and non-
hierarchical classification of geological, climatic, and 
various environmental parameters, coupled with 
geostatistical analysis, allowed for the creation of several 
regionalization maps for the study area. The maps from 
different classification and clustering algorithms have 
been analyzed based on several criteria, including spatial 
homogeneity.  
Analysis of geographic and climatic features, along with 
the geological structure of the area, prompted to 
implement a hierarchical approach for zoning, which 
resulted in identifying three main agglomerated areas 
with different conditions of accumulation of uranium in 
groundwater (Figure 1, left) (Makarenko 2000, 
Kіrovgeologіja 2004). The main approach was to reflect 

the association of climatic variables with the tendency of 
increased mineralized groundwater towards the southeast 
of the country. The three outlined areas were further 
subdivided into six zones (Figure 1, right) based on 
detailed analysis of different models. The resulting 
zoning has a hierarchical structure which makes it more 
flexible and evolutionary adaptive in making decisions 
for geological studies, environmental assessment, and the 
use of groundwater.  

 

  
Fig. 1. Three main zones with different conditions of 
accumulation of uranium in groundwater (left) and proposed 
regionalization of distribution of uranium in Ukraine (right) 

However, the proposed spatial classification 
(regionalization) was based on more than 20 
clusterization outputs/maps, which show cognitive 
clusters, but at the same time, these maps were rather 
different. The applied validation techniques did not 
provide an unbiased answer to the question: what the 
most reliable clustering output is. 
Applying ANN supervised learning techniques to the 
unsupervised classifications from the previous 
experiments resulted in substantially enhanced 
regionalization. Validation and comparison of 
classification results were per-formed by using three 
approaches. First, external indices have been used to 
measure the extent to which cluster la-bels match 
externally supplied class labels. Second, internal indices 
were used to measure the goodness of a clustering 
structure without respect to external information (overall 
similarity), and the third approach is based on the use of a 
relative index to compare two different clustering results. 
The analysis was implemented using SPSS with R 
extensions, ArcGIS, and MatLab. The study resulted in a 
series of refined maps which show homogeneous regions 
of primary environmental variables (or their principle 
components) based on their relationships with the 
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concentration of natural uranium in ground waters. 
Regionalization maps, which were obtained by using 
global and local modifications of MLP, RBF and CNN 
models, will be presented on the respective oral session 
during the ICC2017 conference.  

4. Conclusions 
In this studies, the authors investigated several ANN 
techniques for classification of environmental spatial data 
represented as a point cloud. There are a few ways to 
adopt ANN to work with spatial data, including CNN 
which has been already designed to use spatial 
information between the neighboring neurons based on 
discrete convolution. However, in order to use CNN for 
irregular point classification, a regular matrix of 
neighbors can be constructed, and thus the appropriate 
architecture of the network, and parameters for 
convolution (e.g., type, size, and a number of filters, etc.) 
and pooling (subsampling) layers should be designed. For 
example, filter size can be selected as peaks that reflect 
distances where the spatial processes promoting most 
pronounced clustering which can be calculated based on 
Global Moran’s autocorrelation index (Moran 1950, Ord 
and Getis 2001). The further study is aimed at exploring 
several approaches which incorporate spatial constraints 
into networks. For example, semi-supervised clustering 
that is combining ANN techniques (e.g., RBF) and 
clustering algorithms (e.g., spatially con-strained K-
means) has a potential to increase the accuracy of 
regionalization. 
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