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Abstract: Human settlements are mainly formed by buildings with their different characteristics and usage. Despite the 
importance of buildings for the economy and society, complete regional or even national figures of the entire building 
stock and its spatial distribution are still hardly available. Available digital topographic data sets created by National 
Mapping Agencies or mapped voluntarily through a crowd via Volunteered Geographic Information (VGI) platforms 
(e.g. OpenStreetMap) contain building footprint information but often lack additional information on building type, 
usage, age or number of floors. For this reason, predictive modeling is becoming increasingly important in this context. 
The capabilities of machine learning allow for the prediction of building types and other building characteristics and 
thus, the efficient classification and description of the entire building stock of cities and regions. However, such data-
driven approaches always require a sufficient amount of ground truth (reference) information for training and 
validation. The collection of reference data is usually cost-intensive and time-consuming. Experiences from other 
disciplines have shown that crowdsourcing offers the possibility to support the process of obtaining ground truth data. 
Therefore, this paper presents the results of an experimental study aiming at assessing the accuracy of non-expert 
annotations on street view images collected from an internet crowd. The findings provide the basis for a future 
integration of a crowdsourcing component into the process of land use mapping, particularly the automatic building 
classification. 
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1. Introduction 
Digital building models from National Mapping and 
Cadastral Agencies (NMCA) or Volunteered Geographic 
Information (VGI) platforms often lack attribute 
information, such as the building usage, housing type, 
number of floors, building height, and years of 
construction. However, this information is of particular 
importance for various research domains and applications 
such as spatial science, geography, urban planning, 
architecture, and disaster management. Supervised 
machine learning techniques help to classify the building 
footprints according to a predefined building typology 
and to semantically enrich the datasets with additional 
information. Such data-driven approaches provide 
promising results with high accuracies for single cities 
and regions (e.g. Römer and Plümer 2010; Henn et al. 
2012, Hecht et al. 2015, Wurm et al. 2016). One of the 
main challenges is the limited transferability of the 
classifiers due to strong regional dependencies (Steiniger 
et al. 2008, Hecht et al. 2015). A trained machine 
learning classifier is only applicable for cities with a 
similar building structure and history. Changing the 
spatial and cultural context (e.g. other regions, countries, 
continents etc.) requires the collection of additional 
ground truth data in the specific area under investigation 
for model training and validating. To overcome these 
regional differences, an efficient strategy for ground truth 
data collection needs to be elaborated. In recent years, 
crowdsourcing has been proven suitable for collecting 

training and validation data in a variety of research 
disciplines. In this study, we want to explore the potential 
of crowdsourcing in the context of mapping and 
monitoring urban land use, particularly the classification 
of building footprints in digital topographic databases. 

2. Background and Related Work 
Today citizens are becoming more and more important as 
a new source of geo-information. In the last few years, a 
number of different terms from different disciplines have 
emerged that describe the process of citizen-based 
sensing of geographic information, namely 
crowdsourcing, citizen science, collaborative mapping or 
the crowd-sourced information itself, such as Volunteered 
Geographic Information (VGI) or User-Generated 
Content (UGC). The form of data collection can be very 
different. According to See et al. (2016) crowdsourced 
geographic information can be either contributed actively 
as part of a crowdsourcing system/campaign (e.g. 
OpenStreetMap, Wikimapia) or contributed passively by 
mapping already existing crowdsourced data that has 
been collected for other purposes (e.g. mobile data, 
location-based social media content). Furthermore, the 
types of information (e.g. spatial vs. aspatial, labels vs. 
geometry etc.) or the forms of motivation strategies 
(gamification, paid crowd etc.) can vary. 
In our context, we prefer using the term crowdsourcing 
defined as a type of participative online activity, 
particularly the process of a voluntary undertaking of 
specific tasks (Estellés-Arolas and Ladrón-de-Guevara 
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2012). Crowdsourcing appeared first in Howe (2006) 
describing the business practice of outsourcing activity to 
the crowd, which is today an attractive way of acquiring 
cheap and fast annotations from non-expert contributors 
over the Web that almost have the same quality as expert 
labels (Snow et al. 2008). The idea of using online users 
for the purpose to label images goes back to Luis von 
Ahn who designed the ESP game (von Ahn and Dabbish 
2004) and further developed reCAPTCHA (von Ahn et 
al. 2008), a system to verify humanity and simultaneously 
assisting the digitization of books by solving complex 
OCR problems with crowdsourced labels. Today 
crowdsourcing is used in different research domains to 
collect large datasets that would otherwise not be possible 
using the researcher’s own resources. On the other hand, 
it can be applied to solve computationally expensive and 
difficult problems. Annotations such as boxes, contours, 
correspondences or labels are of research interest, for 
example, in medical image processing (Maier-Hein et al. 
2014) or autonomous driving (Donath and Kondermann 
2013). In the context of land cover mapping and remote 
sensing, crowdsourcing is used to collect data (primarily 
labels) for validation and training, such as in the famous 
Geo-Wiki platform (Fritz et al. 2012, Laso Bayas et al. 
2016). The Geo-Wiki developments go hand in hand with 
studies on data quality (See et al. 2013, Salk et al. 2016). 
In addition to the classification task (labeling), there are 
also conflation tasks and digitization tasks (Albuquerque 
et al. 2016). Hillen and Höfle (2015) have proposed a 
prototype implementation of a system for digitizing 
building footprints, namely Geo-reCAPTCHA. They 
adapted the reCAPTCHA idea to create geographic 
information via web-based micro-mapping tasks and 
assessed time and quality of the data. Further, in an EU 
project CAP4Access crowdsourcing was also tried out for 
the acquisition of sidewalk information that is necessary 
for routing and navigation services tailored to the needs 
of wheelchair users (Hahmann et al. 2016).  

3. System for crowd-sourced data collection 
supporting building type recognition  
In this section, we outline an integrated system for 
automatic classification of building footprints supported 
by crowdsourcing. The automatic classification of 
building footprints uses a supervised machine learning 
approach as described, for example, in Hecht et al. 
(2015). Crowd-sourced annotations on geo-coded street 
view images from the internet supports the training and 
validation of the classifier. The conceptual model for 
crowd-sourced collection of ground-truth data mainly 
consists of the following steps, also shown in Figure 1:  

1)  Definition of building types and visual characteristics 
2)  Construction and design of image annotation tasks  
3)  Collection of street view imagery 
4)  Perform image annotation  
5)  Post-processing, quality assessment and data filtering  
6)  Inference of building types based on the crowd-

sourced data 

At first, a target building classification scheme needs to 
be defined (1). This includes the definition of the building 
types that are subject to the subsequent classification 
process as well as their visual characteristics in the 
images intended to be used. Subsequently, the 
classification problem has to be decomposed into 
individual image annotation tasks (2). This is carried out 
by constructing and designing very simple tasks, which 
requires some a priori expert knowledge of the relevant 
visual characteristics for distinguishing different building 
types. A simple task would be the boolean query of 
whether a particular property is true or false. A more 
complex task offers more than two answer options in 
single-choice or multiple-choice mode. The annotation 
tasks can be implemented in different crowd-
sourcing/micro-task platforms (e.g. CrowdFlower, 
Amazon Mechanical Turk, Crowdcrafting) or in own 
applications and games (e.g. Cropland Capture, 
www.cropland.geo-wiki.org) for different devices. Easy 
handling is one of the most important aspects for task 
designing. The task should be solvable in an acceptable 
amount of time. Further, limitations of the display size 
(desktop computer vs. smartphone) should also be 
considered to ensure readability.  
The next step (3) is to collect the images to be annotated 
by the crowd. Generally, street view or bird’s-eye 
perspective images are desired since these types of 
images allow for the recognition of several building 
properties. Potential image sources are Google Street 
View, Microsoft Bing Maps Bird’s Eye Views, or the 
street-level imagery from the VGI platform Mapillary. In 
addition to these sources, any kind of geotagged imagery 
in social media (Flickr, Facebook, Instagram etc.) can be 
used as long as an automated access is given through a 
provided API by means of a spatial query. The basis for 
the selection of the images can be a random sample of 
addresses (address list), which was created in advance 
from a given spatial database. Once the images are 
collected, the image annotation can be performed (4). The 
task responses are usually recorded along with metadata 
(time, user name, country, etc.). In order to reduce noise 
and to allow for intrinsic quality controlling redundant 
labels are gathered by assigning a task to different 
annotators.  
In a post processing step (5) the results are aggregated by 
majority voting. With the help of intrinsic measures, the 
quality of annotations can be assessed. Based on the 
measures bad annotations or unreliable annotators can be 
identified and excluded from further processing.  
In a final step (6), the building types are derived based on 
the crowd-sourced building characteristics resulting in 
categorical data. This ground truth data can either be used 
for training and / or validation in the context of an 
automatic building classification. 
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Fig. 1.  Workflow of crowd-sourced data collection to support 
automatic building classification 

4. Implementation of the experimental study 
The aim of the study is to validate the performance of 
crowdsourcing for obtaining ground truth information of 
specific building characteristics using street view imagery 
from online resources. According to the conceptual 
workflow, we further specify the design of the study 
including problem definition, the annotation tasks, 
implementation and the validation.  

4.1 Definition of building types 
In our experiment we sought to qualify crowdsourcing 
annotations in the context of building type recognition. 
We focus on the classification of the residential building 
stock in Germany. Several different typologies for 
different purposes can be found in the literature. We use a 
hierarchically structured typology already used in Hecht 
et al. (2015) differentiating nine residential building 
types, particularly detached single-family house (SFH), 
semi-detached SFH, terraced SFH, multi-family house 
(MFH) in open structure, high-rise buildings as MFH, 
traditional MFH in row, industrialized MFH in row, 
block perimeter development and rural houses.  

4.2 Task Design 
Since the tasks for the crowd members need to be as easy 
as possible, we chose very basic questions that anybody 
should be able to answer. Therefore, relevant building 
criteria are identified which are necessary to separate the 
individual building types. The identified criteria are: the 
morphological type, number of floors, housing type, roof 
type, and the building age. We defined six questions in a 
single selection mode, each requesting a different 
building criteria. The survey of the building age is carried 
out via the façade type separated for the SFH and the 
MFH. In this case, the annotators is asked to assign the 
most similar façade (out of a set of typical façades of a 
certain building period) to a building. 
Task Question No. of 

options 
Options 

T1: 
Morphological 
type 

Which type 
of building do 
you see? 

3 Detached house, 
semi-detached 
house, row house 

T2: Number 
of floors 

How many 
storeys do 

9 1, 2, 3, 4, 5, 6, 7, 
8-15, 15 and more 

you see 
(including 
ground 
storey)? 

T3: Housing 
type 

Do you see a 
single-family 
house or a 
multi-family 
house? 

2 single-family 
house (SFH), 
multi-family 
house (MFH) 

T4: Roof type Do you see a 
flat roof or a 
steep roof? 

2 flat roof, steep 
roof 

T5: Façade 
type  
(only MFH) 

What type of 
façade is 
most similar 
to the 
building you 
see? 

5 Wilhelminian 
Style (1870-
1918), Traditional 
row houses (1918 
- 1945), 
Traditional row 
houses (1945 – 
1990), Industrial 
row houses 
(Precast concrete) 
(1970-1990), 
Modern 
construction (after 
1990) 

T6: Façade 
type  
(only SFH) 

What type of 
façade is 
most similar 
to the 
building you 
see? 

3 before 1870 (pre-
industrial), 1870-
1918, 
(Wilhelminian 
style), after 1919 
(after first world 
war) 
 

 

Table 1. Defined Tasks and the characteristics 

4.3 Image data capture  
For the cities of Dresden and Hamburg, reference data 
were available that has been gained by experts through 
previous fieldwork. In addition to the building geometry, 
these include postal addresses as well as information 
about the building type (considering nine types), the 
building height (in m) and the period of construction. 
This building-based reference data is the basis for the 
drawing a random subset of 2,000 building addresses. 
The address list was used to create image requests using 
the Google Street View Image API. Using the API, static 
(non-interactive) views can be defined and embedded into 
web pages using URL parameters sent through a standard 
HTTP request. After the creation of the initial (default) 
URL list, street views were examined manually with 
regard to their usefulness and recognizability of the 
image content and, if necessary, URL parameters (e.g. 
size, fov und pitch) were revised. Approximately 46 % of 
the street views could not be used due to privacy 
concerns in Germany. In these cases, houses are blurred 
in Google Street View. The final data set containing 924 
buildings (approx. 100 per building type) has been stored 
in a database including address data, ULR request, x, y 
coordinates of the buildings´ centroid as well as the 
ground truth information on the building type, building 
height, roof type, etc. 
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4.4 Implementation 
We chose task implementation in an online gaming 
environment with support by Pallas Ludens GmbH 
(www.pallas-ludens.com), a company located in 
Heidelberg, Germany, specialized in these activities. In 
our study, tasks were embedded in computer games by 
replacing commercial ads with crowdsourcing tasks. We 
use online games such as Farmerama of the game 
publisher Bigpoint (www.bigpoint.net) attracting millions 
of desktop users in social networks around the world. The 
number of monthly active users available as a “crowd” is 
been estimated around 250,000 (Pallas Ludens 2014). 
The user interface for desktops consist of two 
components: a display field with the street view image of 
a building to be interpreted and a selection field for 
labeling. Interactive radio buttons with symbolic 
illustrations (showing category text on hover) support the 
annotation process. Users are asked to just click on one of 
the categories (see example in Figure 2). 

 
Fig. 2.  Example of prototype interface (task 1) containing the 
display field with a street view of a semi-detached single-family 
house (left) and selection field with the three clickable answer 
options: detached, semi-detached and row house (right). 

The results of the annotation process conducted and 
controlled by Pallas Ludens GmbH, lead to structured 
output files using JSON (JavaScript Object Notation). 
After conversation into a comma-separated values file 
(CSV), the following values are available for each 
annotation:  

• annotation_ID: annotation identifier (integer) 
• task_ID: task identifer number (integer)  
• image_ID: image identifier (integer) 
• creator: user name as annotator identifier (text) 
• result: label / category (text) 

This data is the basis for the statistical analysis and 
validation. To enable a comparison with external 
reference data, the majority class is determined for each 
image from the multiple responses. 

4.5 Quality assessment 
There are several ways of assessing quality of from 
crowd-sourced annotations. A common approach is to 
compare the data with external ground truth information 
and to calculate accuracy measures (external quality 
assessment). An introduction of measures of thematic 
classification accuracy give Congalton and Green (1998), 

Foody (2002) and Liu et al. (2002). We used the overall 
accuracy that is calculated by dividing the total of correct 
annotations by the total number of annotations. Further, 
category-level accuracy measures such as the producer´s 
accuracy (PA) and the user´s accuracy (UA) representing 
individual accuracies for each category have been 
computed based on an error matrix (Congalton and 
Green, 1998). The error matrix reference data is 
represented in the columns and the classified data in the 
rows. The PA gives the ratio between correctly annotated 
objects and total number of reference objects of that 
category. The UA is the ratio of the correctly annotated 
objects of a certain category to the total number of all 
objects annotated belonging to the category. 

Measures  Notation 

Error matrix taken from  
Congalton and Green (1998)  

Overall 
Accuracy 

𝑂𝑂𝑂𝑂

=
∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑛𝑛
 

 

Producer´s 
accuracy 

𝑃𝑃𝑃𝑃 =
𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛+𝑗𝑗

 

 
User´s 
accuracy 

 

𝑈𝑈𝑈𝑈 =
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖+

 

 

Table 2. Measures for external validation 

External validation always requires sufficient reference 
data, which is not always available. Therefore, 
researchers have developed approaches to evaluate the 
quality of a dataset with the aid of intrinsic indicators as a 
proxy (Senaratne et al. 2016). In our experiment, we 
focused on aspects of agreement and diversity on instance 
level (each image) using measures given in Table 3. The 
inter-annotator agreement (IAA) is a measure that reflects 
how reliable/confident a majority vote is by calculating 
the ratio of the number of annotations in the majority 
category and the total number of annotations per image. 
In other words, it is the agreement among annotators. In 
order to measure the diversity we use Shannon’s 
Diversity Index (SHDI) and Shannon’s Evenness Index 
(SHEI) known from the domain of landscape structure 
analysis (McGarigal and Marks 1995). SHDI is a 
quantitative measure reflecting the amount of 
information, in particular how many different classes 
occur per image, and simultaneously takes into account 
the occurrence of each class. Since SHDI is very sensitive 
to the number of possible categories k, the SHEI was 
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introduced, which is based on SHDI normalized by 
dividing by the maximum diversity present in case of 
equal class distribution (McGarigal and Marks 1995). 
Intrinsic 
Measures 

Notation 

Inter-annotator 
agreement (IAA) 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑎𝑎𝑚𝑚𝑚𝑚

𝑎𝑎  

where 𝑎𝑎𝑚𝑚𝑚𝑚  is the number of annotations in 
the majority category and 𝑎𝑎 the total number 

annotations per image 

Shannon’s 
Diversity Index 
(SHDI) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = −�𝑃𝑃𝑖𝑖

𝑘𝑘

𝑖𝑖=1

∗ ln𝑃𝑃𝑖𝑖 

𝑘𝑘 is the number of possible categories, and 
𝑃𝑃𝑖𝑖 = 𝑎𝑎𝑖𝑖/𝑎𝑎, the proportion of annotations in 
the 𝑖𝑖th category (𝑖𝑖 = 1, … , 𝑘𝑘), where 𝑎𝑎𝑖𝑖 is 

the number of annotations in category 𝑖𝑖 and 
𝑎𝑎 is the total number of annotations. 

Shannon’s 
Evenness Index 
(SHEI) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
ln 𝑘𝑘  

where 𝑘𝑘 is the number of possible categories 

 

Table 3. Intrinsic measures 

5. Experimental Results 
In this section, we present the first results of our 
experimental study. After presenting a descriptive 
statistic of the output data, the results are evaluated by 
using the defined intrinsic and external quality 
measurements. 

5.1  Descriptive Statistics 
Table 4 gives an overview of the data in terms of the 
amount of images, categories, annotations, annotators and 
their relations. The latest column shows the number of 
annotations guaranteed for most of the images, which 
means that more than 95% of the images of each task 
have more than 14 annotations (see also histogram in 
Figure 3).   

Task 

im
age
s 

possi
ble 

categ
ories 

annot
ations 

anno
tator

s 

annot
ations 

per 
imag

e 
(mea

n) 

annot
ations 

per 
annot
ator 
(mea

n) 

annot
ations 
guara
nteed 
for 

95% 
of 

imag
es 

T1: 
Morph
ologica
l type 

92
4 

3 1764
4 

2888 19,1 6,1 14 

T2: 
Numbe
r of 
floors 

92
4 

9 1371
0 

2097 14,8 6,5 15 

T3: 
Housin
g type 

92
4 

2 1385
7 

1001 15,0 13,8 14 

T4: 
Roof 
type 

63
9 

2 1349
7 

1047 21,1 12,9 20 

T5: 
Façade 
type  
(only 
MFH) 

51
9 

5 1815
9 

3525 35,0 5,2 20 

T6: 
Façade 
type  
(only 
SHF) 

40
5 

3 1417
5 

2896 35,0 4,9 35 

 
Table 4. Overview of the resulting data and overall numbers 

 
Fig. 3.  Number of annotations per image for task 1 
(Morphological type) 

5.2 Intrinsic and external validation 
In the following, the results of each task are described 
and evaluated using the defined internal and external 
measures (Table 5). The overall accuracy (OA) was 
determined by comparing the results of the majority vote 
with external reference data and computing the number of 
correct annotations and false annotations. The table 
shows the highest accuracy for task 2 (number of floors), 
task 3 (housing type) and task 4 (roof type) with OA 
values over 0.84. A similar picture is obtained by 
considering the intrinsic dimensions. The values of the 
inter-annotator agreement (IAA) are also high for tasks 3 
and 4, which means that there is a high agreement 
between the annotators. The corresponding values for the 
diversity index SHDI are low, which suggests that many 
annotators have chosen the same class. However, the 
accuracy of the detection of facade types used for the 
reconstruction of the building age (task 5 und 6) is 
limited. Apparently, the assignment of the buildings to a 
certain type of façade may be too difficult, or only a few 
users are able to make these assignments correctly. 
Furthermore, the quality of the results of task 1 
(morphological type) is at this stage unsatisfactory. 
Further investigations are needed in order to identify the 
causes for this misclassification. Initial checks indicate 
that there is a frequent confusion between the row houses 
and the semi-detached houses. The reason for this 
confusion is most likely a large number of street view 
images with an unfavorable view frames (image section) 
that do not allow the recognition of the neighboring 
buildings. Surprisingly, the accuracy of the recognition of 
the housing type is relatively high when looking at OA 
(0.86) and IAA (0.84). Here we had expected less 
accuracy. 

0

50

100

150

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25N
um

be
r o

f i
m
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Annotations per image 

Number of annotations per image (Task 1) 
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 External measures Intrinsic measures 

Task Correct False OA IAA SHDI SHEI 

T1: 
Morphological 
type 

529 395 0,57 0,61 
0,56 

0,51 

T2: Number 
of floors* 

803 121 0,87 0,51 
0,82 

0,38 

T3: Housing 
type 

792 132 0,86 0,84 0,25 0,36 

T4: Roof type 538 101 0,84 0,76 
0,35 

0,51 

T5: Façade 
type (only 
MFH) 

247 272 0,48 0,42 
0,92 

0,57 

T6: Façade 
type (only 
SHF) 

262 142 0,65 0,59 
0,61 

0,56 

 
Table 5. Overall accuracy (OA) and mean values of the inter-
annotator agreement (IAA), Shannon’s Diversity Index (SHDI) 
and Shannon’s Evenness Index (SHEI) 

6. Discussion and future research 
In this paper, we propose an integrated system for 
automatic classification of building footprints that 
supports a crowd-sourced data collection component that 
can be used for training and validation. In an 
experimental study, the quality of crowd-sourced 
annotations on street view imagery is assessed. The 
annotations are related to a set of selected building 
characteristics relevant for distinguishing residential 
building types. These first results initially provide a 
rough overview of the quality. A deeper insight would be 
obtained by carrying out a more detailed analysis by 
having a look at the quality for different building types, 
calculating error matrices, and computing building-type-
specific measures such as the producer´s accuracy and the 
user´s accuracy. Furthermore, the quality of the building 
types automatically derived from the building 
characteristics still needs to be evaluated. 
For this experimental study, we chose online game 
environment for task implementation. However, open 
micro-task platforms such as Crowdcrafting can also be 
considered in future studies. The advantage of this 
platform is that it does not incur any costs in comparison 
to the use of commercial platforms. With regard to the 
image data used, the suitability of alternative data sources 
can be investigated such as Wikimapia or Mapillary. The 
VGI platform Wikimapia contains a large stock of 
geocoded images of buildings, while Mapillary offers 
street-level images. Another interesting data source might 
be the Bird’s Eye Views from Microsoft Bing Maps 
offering multi-perspective views of buildings. The views 
can be provided to the crowd as an embedded interactive 
window using the provided API. A comparison of the 
different data sources could lead to a specific data set 
being particularly suitable for a certain tasks. For 

example, the morphological type in the Birds Eye View is 
certainly better recognizable than in Google's Streetview 
images. 
A further step will be to explore the relationship between 
the intrinsic measures and the data quality based on the 
external measurements. Thus, the question can be 
investigated whether the quality of an annotation can be 
estimated on the intrinsic measures solely. Furthermore, 
the data at annotator-level can be analyzed in order to 
estimate the annotator´s credibility and to identify good 
and bad annotators. These findings would then form the 
basis for the development of suitable filters (selection 
criteria) in the post-processing/quality control step. By 
using only the high-quality annotations from the best 
annotators, the quality of the ground truth data can be 
improved. This, finally improves the accuracy of the 
whole system, particularly the machine learning classifier 
for predicting the building types based on the digital 
topographic data. 
Even if further research is necessary, we believe that 
crowdsourcing in combination with geospatial web 
technologies have the potential to massively reduce time 
and costs in collecting ground truth data for training and 
validating all kind of predictive models. Especially the 
huge time savings can lead to a much faster mapping 
which is essential in disaster mapping. 
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