

Extracting the Essential Cartographic Functionality of
Programs on the Web

Florian Ledermanna

a Research Group Cartography, Department for Geodesy and Geoinformation, TU Wien, Vienna, Austria
florian.ledermann@tuwien.ac.at

Abstract: Following Aristotle, F. P. Brooks (1987) emphasizes the distinction between “essential difficulties” and
“accidental difficulties” as a key challenge in software engineering. From the point of view of cartography, it would be
desirable to identify the cartographic essence of a program, and subject it to additional scrutiny, while its accidental
proper-ties, again from the point of view of cartography, are usually of lesser relevance to cartographic analysis. In this
paper, two methods that facilitate extracting the cartographic essence of programs are presented: close reading of their
source code, and the automated analysis of their runtime behavior. The advantages and shortcomings of both methods
are discussed, followed by an outlook to future developments and potential applications.

Keywords: Cartographic programming, web cartography, methods, cartographic transformations

1. Introduction
Innovation in digital cartography and GIS is historically
tightly connected to the creation of software through
programming (Monmonier, 1985; Chrisman, 2006).
Recently, in web cartography, JavaScript has become the
prime language in which to express cartographic
programs, and the shift to open standards and the desire
to employ and develop the full range of cartographic
representation and interaction techniques has lead to the
rise of pro-grams and tools that implement the whole
cartographic “stack” – from loading and processing
geodata to generalization, symbolization and rendering –
in the web browser, potentially with the assistance of
ready-made “building blocks” provided by third-party
APIs such as Google Maps or D3 (Ledermann and
Gartner, 2015; Roth et al., 2014). Creating such
cartographic programs, but also judging the quality and
relevance of interactive cartographic programs shared
online, and relating what is implemented there to the
knowledge of cartographic techniques, be-comes an
increasingly relevant challenge for cartographers.
Following Aristotle, F. P. Brooks (1987) identifies
distinguishing “essential difficulties” and “accidental
difficulties” as a key challenge in software engineering,
with continuous progress made towards removing non-
essential difficulties through abstraction, so that only
essential aspects remain for the programmer to be
concerned with. From the point of view of cartography, it
would be desirable to learn about the cartographic
essence of a program, and subject it to additional
scrutiny, while its accidental difficulties, again from the
point of view of cartography (such as the specificities of
dealing with the underlying technical platform), are
usually of lesser relevance to cartographic analysis.
Arguably, what is considered essential from a
cartographic point of view may differ greatly from what
is considered most relevant from a generic software
engineering perspective. Therefore, the paradigms

developed by software engineers to deal with the
complexity of a program may be ill suited for
cartographers to allow them to engage with the software
and find what is essential from their point of view well-
represented in the code. At the same time, an
overwhelming amount of the code may be dealing with
essential engineering aspects (such as network ac-cess,
memory management or error handling) that are of lesser
interest – and potentially confusing – to the cartog-rapher.
Attempts to extract or construct a formalized essence of
cartography can be found in research on cartographic
ontologies (Iosifescu-Enescu and Hurni, 2007; Smith,
2010; Penaz et al., 2014) as well as works proposing
taxono-mies for specific aspects of cartography, such as
generalization (McMaster and Shea, 1992; Foerster et al.,
2007) or interaction (Roth, 2013), and theoretical
disciplines such as spatial information theory or
analytical cartography (Moellering, 2000). In the context
of web cartography and “neocartography”, which is
shaped by a diverse range of actors not solely from
academic but also commercial and community-driven
backgrounds (Kraak, 2011), we face the situation that
programs and tools created by these parties do not
necessarily follow the concepts established by academic
cartography. Inspecting the source code of a cartographic
program, we may fail to clearly identify concepts from
the cartographic literature or curriculum. Concepts may
be named differently in the code, out of unawareness of
the cartographic vocabulary or because of a different
perspective on the processes from an engineering
standpoint; Names of variables and functions may be
deliberately obfuscated to prevent such analysis in
commercial products; Procedures may not be as trivial in
the pragmatic context of a running system as in its pure
abstract formulation in theory (See Bostock and Davies
(2013) for a discussion of the practical complexities
involved in an implementation of the simple but versatile
projection of a straight line segment onto the map).

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-66-2017 | © Authors 2017. CC BY 4.0 License.

mailto:florian.ledermann@tuwien.ac.at

 2 of 5

To learn about the cartographic essence contained in a
cartographic program, an empirical, bottom-up approach
seems desirable – how can we identify and “reverse
engineer” (Chikofsky and Cross, 1990) the essence of
carto-graphic program code written by others? With such
a method, we would hope to derive findings from an
analysis of actual program codes that are more fine-
grained than general taxonomies of cartographic
techniques, more universally representing the full
cartographic process than formalized operators known
from GIS and other sub-disciplines, and more distinct and
semantically meaningful than the raw source code itself.
In the remainder of this paper, two novel methods for
analyzing the essence of program code with respect to
cartographic transformations will be presented: close
reading by humans, and automated runtime analysis. For
both methods, a basic framework of analysis, grounded in
Tobler’s idea of transformations as the fundamental
paradigm in cartography (Tobler, 1979; Chrisman, 1999),
is used. The basic questions initially guiding the
investigation are: where can we find transformations in
the code, and where do we locate these transformations in
the overall cartographic pipeline from raw data to
physical output?

2. Close reading of cartographic program code
Analyzing the source code of a program as a textual
artifact by “close reading” has been attempted by social
sciences scholars (Berry, 2011; Mackenzie, 2006), but
not to our knowledge in the domain of cartography or
with a specific interest in cartographic transformations.
Our method for analyzing cartographic programs through
close reading is loosely based on the method of content
analysis, a social sciences method for extracting concepts
from human communication artifacts (Krippendorff,
2012). Content analysis builds on an incremental process
of “coding” 1, i.e. highlighting and assigning keywords to
parts of the text, line by line, in close reading sessions.

Fig. 1. Part of the code of a cartographic program written using
D3, annotated by close reading. This snippet contains aspects of
visual element creation (purple), iteration (orange), cartographic
projection (yellow), geodata access (brown), conditions (red)
and as-signing visual variables (blue).

This method has been applied to a corpus of example
programs using three different base technologies – the
Google Maps API, D3 (Bostock et al., 2011) (both based
on JavaScript) and the Kartograph API (a hybrid API
with JavaScript and Python functionality). A first set of
programs has been chosen from the collection of
“official” examples found on the APIs’ web pages; while
these programs may differ greatly in functionality
between the individual technologies, we assume that their

1 The “coding” activity of content analysis is not to be confused
with programming which is sometimes causally referred to by the
same verb.

creators were competent in programming using the
respective technology, and that these examples
“showcase” the specific strengths of the technology. A
second set of programs implements the creation of a
simple choropleth map in each of the base technologies.
Where available, implementations by the API’s creators
were preferred, in order to assure the program author’s
competence with the given technology.
Applying our method to a collection of cartographic
programs results in i) a taxonomy of transformations and
operations identified in these programs and ii) an
annotated corpus of program code, both of which can be
further analyzed by quantitative or qualitative means. For
example, for programs implementing a simple choropleth
map, code for the Google Maps API is concerned to 51%
with accidental difficulties and 69% with essential
cartographic functionality2, while a similar result is
achieved using D3 having to deal with only 27% of
accidental difficulties – supporting to some extent the
claim that D3 is an “elegant” API that allows users to
focus on the essential parts of a visualization. For further
details, interested readers are referred to the initial results
published in (Ledermann, 2016).
The main drawback of the close reading method is that it
requires substantial effort by well-trained humans to
analyze program code. Analyzing a single example
program by close reading took the author between one
and two working days on average – given the already
limited number of professionals well trained in
cartography and programming, this is hardly a sustainable
approach to analyze large corpora of cartographic
programs. Furthermore, subjective bias cannot be ruled
out in tasks that require human judgment such as the
assignment of cartographic semantics to abstract source
code. To mitigate this limitation, each artifact would be
required to be examined by multiple readers, verifying
intersubjective congruency by measures such as
“intercoder agreement” or α-agreement (Krippendorff,
2012). Findings could further be verified by evaluating a
large number of programs, which is, however, difficult on
a practical level due to the amount of work involved.
An alternative strategy would be to look for automated
methods to analyze the cartographic transformations
present in a cartographic program, either as a sufficient
analysis in itself or as a way to identify the
cartographically “interesting” parts of the code that would
be candidates for subsequent analysis by close reading of
a much smaller piece of code. Such an approach will be
investigated in the next section.

3. Automatic analysis of cartographic programs
Program code follows a strict syntax that can be
unambiguously dissected into its components
(tokenization) and transferred into a data structure
representing all statements and expressions contained in
the code (parsing). So besides viewing the program as

2 The sum is larger than 100% because in some lines both
accidental and essential functionality are present.

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-66-2017 | © Authors 2017. CC BY 4.0 License.

 3 of 5

text, one can generate a more abstract representation of
the program from that text, close to how a computer
would actually represent the program in memory before
running it, that contains all its in-formation in a machine-
processable form. Thus, we can transform the program
code into a data structure that should be more accessible
to automated analysis of its behavior.
However, reasoning about code without executing it is
provably limited – fundamentally, the Church/Turing
hypothesis (Church, 1936; Turing, 1937) states that for a
program it is not generally possible to determine whether
it will terminate, without actually running the program.
While some limited techniques for “static analysis” have
been developed in software engineering (Nielson et al.,
2004), the inability to reliably determine which parts of a
program will be executed at runtime remains a major
obstacle to using static analysis techniques for any
analysis that relates to the result of a program (in our
case: the generated map) – it can simply not be inferred
from the code whether a given part of that code will ever
actually run. Furthermore, JavaScript as a language has
some properties that make it particularly ill-suited to
static analysis (Andreasen and Møller, 2014).
In contrast to static analysis, dynamic analysis is
performed by running the program and simultaneously
monitoring its behavior. For dynamic analysis, it is
necessary to inject some kind of instrumentation into the
runtime environment the program is run in (in our case,
the web browser), in order to perform the monitoring of
the program’s operations. This instrumentation attempts
to capture all operations of the program that are relevant
for the given analysis task.
The subject of this investigation being cartographic
transformations, we are interested in a program’s visual
out-put and all transformations that have been applied to
that output. To capture this information, all visually
relevant operations of the program are intercepted and
recorded. Web browsers offer a plethora of methods to
create or modify the visual appearance of a page – we
currently identified 128 methods and properties provided
by the Document Object Model (DOM), the web
browsers basic API for interacting with the page, that
need to be intercepted. To capture transformations, the
program is executed step by step, tracing every variable
and each operation per-formed on them.
Using this technical fixture, all visual elements generated
by the program can be captured, decomposed into their
visual attributes (e.g. a line has x and y coordinates for
start- and endpoint, a thickness value and a color value as
a minimum set of attributes), and for each attribute the
sequence of operations that have been involved in its
calculation (its data flow graph) can be retrieved. For
each operation in the data flow graph, in turn, its location
in the source code can be retrieved and visualized on
demand for subsequent human inspection (potentially by
selectively applying the close reading technique
presented in section 2 on selected parts of the code). See
figure 2 for an illustration of the result of such an analysis
for a single visual attribute of a single point on the map.

Fig. 2. The visualization of parts of the cartographic essence of
a program as a result of the automatic analysis. Depicted here is
a da-ta flow graph of a single graphical attribute (the x
coordinate of the endpoint of a line, derived from the longitude
of a given point by an implementation of the Web Mercator
projection). Each node in the data flow graph is either an
arithmetic expressions or data con-version, and can be traced
back to its location in the source code, facilitating closer
inspection on demand.

Dynamic program analysis provides a method to reduce
potentially vast programs, containing a lot of “accidental”
functionality of no primary interest to cartographers, to a
list of operations which are potentially relevant for
cartographic analysis (i.e. visual operations). For each of
these operations, a data flow graph is provided that de-
tails how the concrete value (for example, a coordinate or
color value) was calculated from operations defined in
the code. Both of these results (the list of operations, and
the data flow graph for each operation/attribute) have
promising potential for subsequent automatic or manual
analysis that should be much easier to perform than the
analysis of the raw source code, since it will operate on a
highly aggregated representation of a small selection of
the original code.
An immediate next step would be to attempt to identify
patterns in the data flow graphs. For example, identify-
ing well known projections in the graph should be
possible, and would work independent of the concrete
syntax and semantics of the implementation of the
projection.

4. Discussion and Outlook
Extracting the cartographic essence of programs is a
challenging task with many possible approaches.
Attempts that use the textual representation of a
program’s source code as basis for analysis (such as close
reading or static analysis) are heavily reliant on the
structure and semantics of the code, which may be guided
by software engineering requirements or the
technological context and not primarily by cartographic
concerns. Such methods are there-fore sensitive to
syntactic variations in the code that may not change the
underlying transformations, but provide a structurally
different implementation (For example, between different
APIs or even with an updated version of an API). They
work well in identifying cartographic patterns in code
using well-designed APIs, but break down with obscure
implementations or unknown paradigms. Because of their
reliance on program semantics (e.g. the names of
functions and variables), these approaches are also
vulnerable to code obfuscation, a technique frequently

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-66-2017 | © Authors 2017. CC BY 4.0 License.

 4 of 5

employed by commercial software producers to impede
reverse engineering of their products3.
The proposed method of dynamic analysis reliably
captures all visually relevant operations of a program run,
and traces each attribute of these operations back through
the transformations defined in the code. This approach
should therefore be much more robust to syntactic and
semantic variations, i.e. different implementations of the
same cartographic operation (projection, interpolation,
generalization etc.), and should produce identical or
similar data flow graphs for the same cartographic
concept implemented in different APIs, API versions or
even deliberately obfuscated programs. However, these
assumptions about the proposed method are still to be
verified in detail and across a larger variety of “real life”
programs.
The next step towards an automatic analysis system
would be the identification of patterns in the dataflow
graph that represent well known cartographic operations.
An initial task would be to determine whether a given
pro-gram is a cartographic program at all – whether it
contains any cartographic transformation. This of course
depends on the concrete definition of a cartographic
transformation, but one could require, for example, a
projection from geographic space to map space to be
involved. Identifying cartographic programs would
therefore involve looking for patterns representing
cartographic projections in their dataflow graphs.
Although the practical and theoretical limitations of the
manual close reading approach were discussed and seem
to prohibit a sweeping application on large corpora,
further validation of the method by verifying intercoder
agreement across individuals, both for experienced
programmers as well as for novices or students, seems
desirable. Even with automatic analysis methods in place,
the selective study of source code will be required for
some of the final steps in an analysis, and the role of
source code comprehension in learning (cartographic)
programming needs to be better understood (Roth et al.,
2014).
If automatic and semi-automatic methods such as the
ones proposed in this paper can be developed into a
working system, further practical applications can be
envisioned. On the level of individual maps and users, a
web browser plugin for analyzing online maps with
respect to their cartographic processes could be
developed, assisting novices and professionals in
scrutinizing such programs. For teaching purposes, an
interactive learning environment could be envisioned that
visualizes and explains the cartographic processes of a
program, providing a visual and domain-specific interface
to the program code. Finally, an improved understanding
of the cartographic essence of programs could lead to a
refinement in our conceptualizations of cartographic
transformations, which in turn could lead to the

3 Please be advised that applying reverse engineering methods on
commercial software may be a breach of the law and/or the usage
terms of the software and consult with a legal advisor before
attempting to use similar techniques on such programs!

development of more powerful and/or usable APIs for
interactive cartography.

5. Acknowledgements
The author wants to thank Georg Gartner and Silvia
Klettner for fruitful discussions and helpful suggestions
in early stages of this re-search.

6. References
Andreasen, E., Møller, A., 2014. Determinacy in Static

Analysis for jQuery, in: Proc. ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

Berry, D.M., 2011. The Philosophy of Software: Code
and Mediation in the Digital Age. Palgrave Macmillan,
Basingstoke.

Bostock, M., Davies, J., 2013. Code as Cartography. The
Cartographic Journal 50, 129–135.
doi:10.1179/0008704113Z.00000000078

Bostock, M., Ogievetsky, V., Heer, J., 2011. D3: Data-
Driven Documents. IEEE Transactions on Visualization
and Computer Graphics 17, 2301–2309.
doi:10.1109/TVCG.2011.185

Brooks, F.P., Jr., 1987. No Silver Bullet – Essence and
Accidents of Software Engineering. Computer 20, 10–
19. doi:10.1109/MC.1987.1663532

Chikofsky, E.J., Cross, J.H., 1990. Reverse engineering
and design recovery: a taxonomy. IEEE Software 7, 13–
17. doi:10.1109/52.43044

Chrisman, N., 1999. A transformational approach to GIS
operations. International Journal of Geographical
Information Science 13, 617–637.

Chrisman, N.R., 2006. Charting the Unknown: How
Computer Mapping at Harvard Became GIS. ESRI
Press.

Church, A., 1936. A note on the Entscheidungsproblem.
Journal of Symbolic Logic 1, 40–41.
doi:10.2307/2269326

Foerster, T., Stoter, J., Kobben, B., 2007. Towards a
formal classification of generalization operators, in:
Proceedings of the 23rd In-ternational Cartographic
Conference (ICC2007). Presented at the ICC2007,
Moscow, Russia.

Iosifescu-Enescu, I., Hurni, L., 2007. Towards
cartographic ontologies or “how computers learn
cartography,” in: Proceedings of the 23rd International
Cartographic Conference (ICC2007). Presented at the
ICC2007, Moscow, Russia.

Kraak, M.-J., 2011. Is there a need for neo-cartography?
Cartography and Geographic Information Science 38,
73–78.

Krippendorff, K., 2012. Content Analysis: An
Introduction to Its Methodology. SAGE.

Ledermann, F., 2016. Initial Findings from Close
Reading of Cartographic Programs, in: Workshop
„Code Loves Maps“, AGILE 2016. Helsinki, Finland.

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-66-2017 | © Authors 2017. CC BY 4.0 License.

 5 of 5

Ledermann, F., Gartner, G., 2015. mapmap.js: A Data-
Driven Web Mapping API for Thematic Cartography,
in: Proceedings of the 27th International Cartographic
Conference (ICC2015). Presented at the ICC2015, Rio
de Janeiro, Brasil.

Mackenzie, A., 2006. Cutting Code: Software and
Sociality. Peter Lang Publishing, New York.

McMaster, R.B., Shea, K.S., 1992. Generalization in
digital cartography. Association of American
Geographers, Washington, DC.

Moellering, H., 2000. The Scope and Conceptual Content
of Analytical Cartography. Cartography and Geographic
Information Sci-ence 27, 205–224.
doi:10.1559/152304000783547858

Monmonier, M.S., 1985. Technological Transition in
Cartography. University of Wisconsin Press, Madison,
Wisconsin.

Nielson, F., Nielson, H.R., Hankin, C., 2004. Principles
of Program Analysis. Springer Science & Business
Media.

Penaz, T., Dostal, R., Yilmaz, I., Marschalko, M., 2014.
Design and Construction of Knowledge Ontology for
Thematic Cartography Domain. Episodes 37, 48–58.

Roth, R.E., 2013. An empirically-derived taxonomy of
interaction primitives for interactive cartography and
geovisualization. IEEE Transactions on Visualization
and Computer Graphics 19, 2356–2365.
doi:10.1109/TVCG.2013.130

Roth, R.E., Donohue, R.G., Sack, C.M., Wallace, T.R.,
Buckingham, T.M.A., 2014. A Process for Keeping
Pace with Evolving Web Mapping Technologies.
Cartographic Perspectives 25–52.
doi:10.14714/CP78.1273

Smith, R.A., 2010. Designing a cartographic ontology for
use with expert systems, in: Proceedings of the 18th
AutoCarto Conference. Presented at the 18th AutoCarto
Conference, Orlando, USA.

Tobler, W.R., 1979. A Transformational View of
Cartography. The American Cartographer 6, 101–106.

Turing, A.M., 1937. On Computable Numbers, with an
Application to the Entscheidungsproblem. Proceedings
of the London Math-ematical Society S2.42, 230–265.
doi:10.1112/plms/s2-42.1.230

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-66-2017 | © Authors 2017. CC BY 4.0 License.

	Extracting the Essential Cartographic Functionality of Programs on the Web
	1. Introduction
	2. Close reading of cartographic program code
	3. Automatic analysis of cartographic programs
	4. Discussion and Outlook
	5. Acknowledgements
	6. References

