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Abstract: Following Aristotle, F. P. Brooks (1987) emphasizes the distinction between “essential difficulties” and 
“accidental difficulties” as a key challenge in software engineering. From the point of view of cartography, it would be 
desirable to identify the cartographic essence of a program, and subject it to additional scrutiny, while its accidental 
proper-ties, again from the point of view of cartography, are usually of lesser relevance to cartographic analysis. In this 
paper, two methods that facilitate extracting the cartographic essence of programs are presented: close reading of their 
source code, and the automated analysis of their runtime behavior. The advantages and shortcomings of both methods 
are discussed, followed by an outlook to future developments and potential applications. 
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1. Introduction 
Innovation in digital cartography and GIS is historically 
tightly connected to the creation of software through 
programming (Monmonier, 1985; Chrisman, 2006). 
Recently, in web cartography, JavaScript has become the 
prime language in which to express cartographic 
programs, and the shift to open standards and the desire 
to employ and develop the full range of cartographic 
representation and interaction techniques has lead to the 
rise of pro-grams and tools that implement the whole 
cartographic “stack” – from loading and processing 
geodata to generalization, symbolization and rendering – 
in the web browser, potentially with the assistance of 
ready-made “building blocks” provided by third-party 
APIs such as Google Maps or D3 (Ledermann and 
Gartner, 2015; Roth et al., 2014). Creating such 
cartographic programs, but also judging the quality and 
relevance of interactive cartographic programs shared 
online, and relating what is implemented there to the 
knowledge of cartographic techniques, be-comes an 
increasingly relevant challenge for cartographers. 
Following Aristotle, F. P. Brooks (1987) identifies 
distinguishing “essential difficulties” and “accidental 
difficulties” as a key challenge in software engineering, 
with continuous progress made towards removing non-
essential difficulties through abstraction, so that only 
essential aspects remain for the programmer to be 
concerned with. From the point of view of cartography, it 
would be desirable to learn about the cartographic 
essence of a program, and subject it to additional 
scrutiny, while its accidental difficulties, again from the 
point of view of cartography (such as the specificities of 
dealing with the underlying technical platform), are 
usually of lesser relevance to cartographic analysis. 
Arguably, what is considered essential from a 
cartographic point of view may differ greatly from what 
is considered most relevant from a generic software 
engineering perspective. Therefore, the paradigms 

developed by software engineers to deal with the 
complexity of a program may be ill suited for 
cartographers to allow them to engage with the software 
and find what is essential from their point of view well-
represented in the code. At the same time, an 
overwhelming amount of the code may be dealing with 
essential engineering aspects (such as network ac-cess, 
memory management or error handling) that are of lesser 
interest – and potentially confusing – to the cartog-rapher.  
Attempts to extract or construct a formalized essence of 
cartography can be found in research on cartographic 
ontologies (Iosifescu-Enescu and Hurni, 2007; Smith, 
2010; Penaz et al., 2014) as well as works proposing 
taxono-mies for specific aspects of cartography, such as 
generalization (McMaster and Shea, 1992; Foerster et al., 
2007) or interaction (Roth, 2013), and theoretical 
disciplines such as spatial information theory or 
analytical cartography (Moellering, 2000). In the context 
of web cartography and “neocartography”, which is 
shaped by a diverse range of actors not solely from 
academic but also commercial and community-driven 
backgrounds (Kraak, 2011), we face the situation that 
programs and tools created by these parties do not 
necessarily follow the concepts established by academic 
cartography. Inspecting the source code of a cartographic 
program, we may fail to clearly identify concepts from 
the cartographic literature or curriculum. Concepts may 
be named differently in the code, out of unawareness of 
the cartographic vocabulary or because of a different 
perspective on the processes from an engineering 
standpoint; Names of variables and functions may be 
deliberately obfuscated to prevent such analysis in 
commercial products; Procedures may not be as trivial in 
the pragmatic context of a running system as in its pure 
abstract formulation in theory (See Bostock and Davies 
(2013) for a discussion of the practical complexities 
involved in an implementation of the simple but versatile 
projection of a straight line segment onto the map). 
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To learn about the cartographic essence contained in a 
cartographic program, an empirical, bottom-up approach 
seems desirable – how can we identify and “reverse 
engineer” (Chikofsky and Cross, 1990) the essence of 
carto-graphic program code written by others? With such 
a method, we would hope to derive findings from an 
analysis of actual program codes that are more fine-
grained than general taxonomies of cartographic 
techniques, more universally representing the full 
cartographic process than formalized operators known 
from GIS and other sub-disciplines, and more distinct and 
semantically meaningful than the raw source code itself. 
In the remainder of this paper, two novel methods for 
analyzing the essence of program code with respect to 
cartographic transformations will be presented: close 
reading by humans, and automated runtime analysis. For 
both methods, a basic framework of analysis, grounded in 
Tobler’s idea of transformations as the fundamental 
paradigm in cartography (Tobler, 1979; Chrisman, 1999), 
is used. The basic questions initially guiding the 
investigation are: where can we find transformations in 
the code, and where do we locate these transformations in 
the overall cartographic pipeline from raw data to 
physical output? 

2. Close reading of cartographic program code 
Analyzing the source code of a program as a textual 
artifact by “close reading” has been attempted by social 
sciences scholars (Berry, 2011; Mackenzie, 2006), but 
not to our knowledge in the domain of cartography or 
with a specific interest in cartographic transformations. 
Our method for analyzing cartographic programs through 
close reading is loosely based on the method of content 
analysis, a social sciences method for extracting concepts 
from human communication artifacts (Krippendorff, 
2012). Content analysis builds on an incremental process 
of “coding” 1, i.e. highlighting and assigning keywords to 
parts of the text, line by line, in close reading sessions. 

 
Fig. 1.  Part of the code of a cartographic program written using 
D3, annotated by close reading. This snippet contains aspects of 
visual element creation (purple), iteration (orange), cartographic 
projection (yellow), geodata access (brown), conditions (red) 
and as-signing visual variables (blue). 

This method has been applied to a corpus of example 
programs using three different base technologies – the 
Google Maps API, D3 (Bostock et al., 2011) (both based 
on JavaScript) and the Kartograph API (a hybrid API 
with JavaScript and Python functionality). A first set of 
programs has been chosen from the collection of 
“official” examples found on the APIs’ web pages; while 
these programs may differ greatly in functionality 
between the individual technologies, we assume that their 
                                                           
1 The “coding” activity of content analysis is not to be confused 
with programming which is sometimes causally referred to by the 
same verb. 

creators were competent in programming using the 
respective technology, and that these examples 
“showcase” the specific strengths of the technology. A 
second set of programs implements the creation of a 
simple choropleth map in each of the base technologies. 
Where available, implementations by the API’s creators 
were preferred, in order to assure the program author’s 
competence with the given technology. 
Applying our method to a collection of cartographic 
programs results in i) a taxonomy of transformations and 
operations identified in these programs and ii) an 
annotated corpus of program code, both of which can be 
further analyzed by quantitative or qualitative means. For 
example, for programs implementing a simple choropleth 
map, code for the Google Maps API is concerned to 51% 
with accidental difficulties and 69% with essential 
cartographic functionality2, while a similar result is 
achieved using D3 having to deal with only 27% of 
accidental difficulties – supporting to some extent the 
claim that D3 is an “elegant” API that allows users to 
focus on the essential parts of a visualization. For further 
details, interested readers are referred to the initial results 
published in (Ledermann, 2016). 
The main drawback of the close reading method is that it 
requires substantial effort by well-trained humans to 
analyze program code. Analyzing a single example 
program by close reading took the author between one 
and two working days on average – given the already 
limited number of professionals well trained in 
cartography and programming, this is hardly a sustainable 
approach to analyze large corpora of cartographic 
programs. Furthermore, subjective bias cannot be ruled 
out in tasks that require human judgment such as the 
assignment of cartographic semantics to abstract source 
code. To mitigate this limitation, each artifact would be 
required to be examined by multiple readers, verifying 
intersubjective congruency by measures such as 
“intercoder agreement” or α-agreement (Krippendorff, 
2012). Findings could further be verified by evaluating a 
large number of programs, which is, however, difficult on 
a practical level due to the amount of work involved. 
An alternative strategy would be to look for automated 
methods to analyze the cartographic transformations 
present in a cartographic program, either as a sufficient 
analysis in itself or as a way to identify the 
cartographically “interesting” parts of the code that would 
be candidates for subsequent analysis by close reading of 
a much smaller piece of code. Such an approach will be 
investigated in the next section. 

3. Automatic analysis of cartographic programs 
Program code follows a strict syntax that can be 
unambiguously dissected into its components 
(tokenization) and transferred into a data structure 
representing all statements and expressions contained in 
the code (parsing). So besides viewing the program as 

                                                           
2 The sum is larger than 100% because in some lines both 
accidental and essential functionality are present. 
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text, one can generate a more abstract representation of 
the program from that text, close to how a computer 
would actually represent the program in memory before 
running it, that contains all its in-formation in a machine-
processable form. Thus, we can transform the program 
code into a data structure that should be more accessible 
to automated analysis of its behavior. 
However, reasoning about code without executing it is 
provably limited – fundamentally, the Church/Turing 
hypothesis (Church, 1936; Turing, 1937) states that for a 
program it is not generally possible to determine whether 
it will terminate, without actually running the program. 
While some limited techniques for “static analysis” have 
been developed in software engineering (Nielson et al., 
2004), the inability to reliably determine which parts of a 
program will be executed at runtime remains a major 
obstacle to using static analysis techniques for any 
analysis that relates to the result of a program (in our 
case: the generated map) – it can simply not be inferred 
from the code whether a given part of that code will ever 
actually run. Furthermore, JavaScript as a language has 
some properties that make it particularly ill-suited to 
static analysis (Andreasen and Møller, 2014). 
In contrast to static analysis, dynamic analysis is 
performed by running the program and simultaneously 
monitoring its behavior. For dynamic analysis, it is 
necessary to inject some kind of instrumentation into the 
runtime environment the program is run in (in our case, 
the web browser), in order to perform the monitoring of 
the program’s operations. This instrumentation attempts 
to capture all operations of the program that are relevant 
for the given analysis task. 
The subject of this investigation being cartographic 
transformations, we are interested in a program’s visual 
out-put and all transformations that have been applied to 
that output. To capture this information, all visually 
relevant operations of the program are intercepted and 
recorded. Web browsers offer a plethora of methods to 
create or modify the visual appearance of a page – we 
currently identified 128 methods and properties provided 
by the Document Object Model (DOM), the web 
browsers basic API for interacting with the page, that 
need to be intercepted. To capture transformations, the 
program is executed step by step, tracing every variable 
and each operation per-formed on them. 
Using this technical fixture, all visual elements generated 
by the program can be captured, decomposed into their 
visual attributes (e.g. a line has x and y coordinates for 
start- and endpoint, a thickness value and a color value as 
a minimum set of attributes), and for each attribute the 
sequence of operations that have been involved in its 
calculation (its data flow graph) can be retrieved. For 
each operation in the data flow graph, in turn, its location 
in the source code can be retrieved and visualized on 
demand for subsequent human inspection (potentially by 
selectively applying the close reading technique 
presented in section 2 on selected parts of the code). See 
figure 2 for an illustration of the result of such an analysis 
for a single visual attribute of a single point on the map. 

 
Fig. 2.  The visualization of parts of the cartographic essence of 
a program as a result of the automatic analysis. Depicted here is 
a da-ta flow graph of a single graphical attribute (the x 
coordinate of the endpoint of a line, derived from the longitude 
of a given point by an implementation of the Web Mercator 
projection). Each node in the data flow graph is either an 
arithmetic expressions or data con-version, and can be traced 
back to its location in the source code, facilitating closer 
inspection on demand. 

Dynamic program analysis provides a method to reduce 
potentially vast programs, containing a lot of “accidental” 
functionality of no primary interest to cartographers, to a 
list of operations which are potentially relevant for 
cartographic analysis (i.e. visual operations). For each of 
these operations, a data flow graph is provided that de-
tails how the concrete value (for example, a coordinate or 
color value) was calculated from operations defined in 
the code. Both of these results (the list of operations, and 
the data flow graph for each operation/attribute) have 
promising potential for subsequent automatic or manual 
analysis that should be much easier to perform than the 
analysis of the raw source code, since it will operate on a 
highly aggregated representation of a small selection of 
the original code. 
An immediate next step would be to attempt to identify 
patterns in the data flow graphs. For example, identify-
ing well known projections in the graph should be 
possible, and would work independent of the concrete 
syntax and semantics of the implementation of the 
projection. 

4. Discussion and Outlook 
Extracting the cartographic essence of programs is a 
challenging task with many possible approaches. 
Attempts that use the textual representation of a 
program’s source code as basis for analysis (such as close 
reading or static analysis) are heavily reliant on the 
structure and semantics of the code, which may be guided 
by software engineering requirements or the 
technological context and not primarily by cartographic 
concerns. Such methods are there-fore sensitive to 
syntactic variations in the code that may not change the 
underlying transformations, but provide a structurally 
different implementation (For example, between different 
APIs or even with an updated version of an API). They 
work well in identifying cartographic patterns in code 
using well-designed APIs, but break down with obscure 
implementations or unknown paradigms. Because of their 
reliance on program semantics (e.g. the names of 
functions and variables), these approaches are also 
vulnerable to code obfuscation, a technique frequently 
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employed by commercial software producers to impede 
reverse engineering of their products3. 
The proposed method of dynamic analysis reliably 
captures all visually relevant operations of a program run, 
and traces each attribute of these operations back through 
the transformations defined in the code. This approach 
should therefore be much more robust to syntactic and 
semantic variations, i.e. different implementations of the 
same cartographic operation (projection, interpolation, 
generalization etc.), and should produce identical or 
similar data flow graphs for the same cartographic 
concept implemented in different APIs, API versions or 
even deliberately obfuscated programs. However, these 
assumptions about the proposed method are still to be 
verified in detail and across a larger variety of “real life” 
programs.  
The next step towards an automatic analysis system 
would be the identification of patterns in the dataflow 
graph that represent well known cartographic operations. 
An initial task would be to determine whether a given 
pro-gram is a cartographic program at all – whether it 
contains any cartographic transformation. This of course 
depends on the concrete definition of a cartographic 
transformation, but one could require, for example, a 
projection from geographic space to map space to be 
involved. Identifying cartographic programs would 
therefore involve looking for patterns representing 
cartographic projections in their dataflow graphs. 
Although the practical and theoretical limitations of the 
manual close reading approach were discussed and seem 
to prohibit a sweeping application on large corpora, 
further validation of the method by verifying intercoder 
agreement across individuals, both for experienced 
programmers as well as for novices or students, seems 
desirable. Even with automatic analysis methods in place, 
the selective study of source code will be required for 
some of the final steps in an analysis, and the role of 
source code comprehension in learning (cartographic) 
programming needs to be better understood (Roth et al., 
2014). 
If automatic and semi-automatic methods such as the 
ones proposed in this paper can be developed into a 
working system, further practical applications can be 
envisioned. On the level of individual maps and users, a 
web browser plugin for analyzing online maps with 
respect to their cartographic processes could be 
developed, assisting novices and professionals in 
scrutinizing such programs. For teaching purposes, an 
interactive learning environment could be envisioned that 
visualizes and explains the cartographic processes of a 
program, providing a visual and domain-specific interface 
to the program code. Finally, an improved understanding 
of the cartographic essence of programs could lead to a 
refinement in our conceptualizations of cartographic 
transformations, which in turn could lead to the 
                                                           
3 Please be advised that applying reverse engineering methods on 
commercial software may be a breach of the law and/or the usage 
terms of the software and consult with a legal advisor before 
attempting to use similar techniques on such programs! 

development of more powerful and/or usable APIs for 
interactive cartography. 
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