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Abstract: Personal and subjective perceptions of urban space have been a focus of various research projects in the area 
of cartography, geography, and related fields such as urban planning. This paper illustrates how personal georeferenced 
activity data can be used in algorithmic modelling of certain aspects of mental maps and customised spatial 
visualisations. The technical implementation of the algorithm is accompanied by a preliminary study which evaluates 
the performance of the algorithm. As a linking element between personal perception, interpretation, and depiction of 
space and the field of cartography and geography, we include perspectives from artistic practice and cultural theory. By 
developing novel visualisation concepts based on personal data, the paper in part mitigates the challenges presented by 
user modelling that is, amongst others, used in LBS applications. 
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1. Introduction 
 
The ways in which we experience and memorise our 
interactions with the physical world are highly personal 
and subjective. To a certain extent, mobile and web-based 
systems already make use of personalised map 
approaches that account for subjective views and 
different modes of representation. Nonetheless, most of 
the tools that we use to navigate and explore geographic 
space are standardised mapping tools. This paper will 
briefly highlight the discourses on personal and mental 
maps with examples from a cartographic perspective as 
well as informed by cultural theory and artistic practice. 
Building upon those discourses, we developed 
algorithmic approaches to aggregate, analyse, and 
visualise personal activity data. The visual output is 
constructed as explorative visualisations, more- over, it 
also acts as a discursive artefact in order to foster 
discussion and reflection on individual spatial 
knowledge, perception, and behaviour. 
This paper thus revolves around the research question of 
how we can model spatial behaviour based on personal 
georeferenced activity data, while a) building on mental 
map theories about the influence of mode of transport and 
b) reflecting artistic and political aspects     of 
psychogeography. 

2. Personal (Mental) Map 
Several academic disciplines, ranging from sociology to 
psychology and philosophy, have explored the subjective 
perception of the physical world and its social and mental 
manifestations. At the same time, the embodiment and 
representation of political and social implications of 
(urban) space have been a recurring topic in literature, 
visual art, and philosophy. In the following two sections 
we will firstly discuss research from cartography and 

cognitive sciences and secondly take up artistic and 
theoretic approaches. 

2.1 Academic Perspectives: Cartography and 
Cognitive Sciences 
A large body of research has been focused on the 
question of how people construct spatial knowledge and 
how this knowledge is used to make sense of the physical 
world, for instance when performing navigational tasks. 
A dominant image used in this discourse is the mental 
map. A general hypothesis within these discourses 
assumes that an aggregation of the entirety of our 
experiences form and influence our mental 
representations of space (Kitchin, 1994; Montello, 2002). 
Tversky extended the metaphoric concept of the mental 
map to mental collages, as those mental representations 
are not solely of map-like forms. Instead, they can rather 
be understood as collages of experiences in our memory 
which include stimuli such as images, sounds, or odours 
(Tversky, 1993). More generally, the correlation between 
map use and its impact on the shaping of mental maps 
has been a strong research focus, unravelling findings like 
the interdependency of orientation in maps and mental 
maps (mental rotation) (Tversky, 1992; Hintzman et al, 
1981). Among these influencing factors, the mode of 
transport has been identified as one that has significant 
impact on our perception of space and on how we interact 
with our environment, an assumption that we will explore 
further below. 
Scientists have tried to capture and visualise mental 
representations of space, for instance by letting people 
draw or describe maps (Lynch 1960; Vertesi 2008). 
Research in neuroscience has produced valuable results in 
visualising neuronal maps that indicate where spatial 
information is stored in our brain (Maguire et al. 1997). 
However, visualising the resulting mental maps 
themselves has proven difficult. Taking these constraints 
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into account, this paper will not try to visualise a whole 
mental map or mental collage, but instead focus on one of 
the previously mentioned influencing factors that form 
our mental maps: the mode of transport. 
Within the research area of mental maps and navigational 
tasks, a specific strand of research is dedicated to so-
called landmarks; a construct which was introduced to the 
science community by Lynch in 1960 (Lynch 1960). 
Landmarks are physical constructs, such as buildings, that 
are of certain significance for a user, for instance as 
visual aids in order to memorise a route (Foo et al, 2005). 
Researchers have been trying to understand what makes a 
physical construct a landmark and how people use them 
when navigating and memorising urban structures. Most 
research that focuses on understanding  the impact of 
landmarks includes analysing the given physical 
structures, their visual features, and how a building stands 
out from its surroundings (e.g. salience approaches by 
Caduff et al. (Caduff and Timpf 2008)). This approach 
does not account for the individual and his or her 
experiences within this space. The concept of landmarks 
is, like many other cartographic approaches, characterised 
by the objective to generalise spatial information insofar 
as it seeks to identify objects that might be of significance 
for the general public. Nonetheless, the concept of 
landmarks also comes into play in our approach. 
However, we use landmarks in a highly personalised 
algorithmic spatial representation as a canvas for data 
mapping and visualisation, as will be further described in 
section 3. 

2.2 Psychogeography as Political Practice 
Within the context of Post-Marxism and the spatial 
analysis of culture, political theorist Frederic Jameson 
elaborates on "cognitive mapping" from a much more 
political stance. He contextualises the concept in 
reference to the notion of an "(unrepresentable, 
imaginary) global social totality that was to have been 
mapped" (Jameson 1988: 356) and links it to the context 
of a socialist agenda. When applied to the design space of 
an actual rendering of a cognitive map, his envisioning of 
a new space could be translated into a conceptual model 
for spatial representation. Jameson describes a 
"suppression of distance [...] and the relentless saturation 
of any remaining voids and empty places" (Jameson 
1988: 351) . The distortion that arises from this 
suppression of distance can serve as one of the 
implications for the design of a visual representation of a 
mental map. At the same time, Jameson points out that 
"[a]esthetics is something that addresses individual 
experience rather than some- thing that conceptualizes the 
real in a more abstract way" (Jameson 1988: 358). 
Building on this notion, we deliberately distance our 
visualisation of personal movement data from seemingly 
objective and cartographic representations and put an 
emphasis on metamorphic shapes and aesthetic 
representations. This, as will be shown in section 4, is 
done to a degree that explicitly disregards geographic 
accuracy and submerges into unique formations of a 
psychogeographical space that is the subjective city. 

The term psychogeography was most prominently coined 
by the French Situationist International in the 1950s and 
is understood as "the study of the […] specific effects of 
the geographical environment, whether consciously 
organized or not, on the emotions and behavior of 
individuals" (Debord 1955). With his work, Debord 
joined the ranks of writers and artists that, before him, 
had revolved around the flâneur as a metaphoric figure 
that strolls the (post) modernist city. This figure has since 
been subject to significant scrutiny and even re-emerged 
in the guise of the cyberflâneur which opens a point of 
reference for our model in the age of the quantified self. 
Self-tracking cultures have introduced disciplinary 
monitoring on a seemingly voluntary level into formerly 
nondisciplinary (private) spaces (Whitson 2015). With 
the visualisations described below, we return to Debord’s 
depiction of personal experiences within urban space by 
using data gathered in self-tracking apps. Reflecting on 
these references, our mental maps should re-introduce the 
subjective view to a practice which often claims to 
provide objective results. 
The visualisation deliberately applies distortion and 
metamorphic shapes to a cartographic and geographic 
canvas. As a result, our visualisation of personal 
movement data only fully makes sense in reference to the 
individual experience of urban space. 

2.3 Duality 
The two previous sections introduced a framework for the 
concept of mental maps which builds on cartography as 
well as critical theories. Our approach is informed by 
both of these discourses and aims at introducing a new 
perspective on representations of personal spatial 
behaviour data. Thereby, we seek to bridge the gap 
between the specialised disciplines and practices of 
cartography and visualisation, and more artistic and 
experimental approaches. We believe that visualisations 
can be extended beyond their function as visual output of 
(quantitative) data in that they can be staged as individual 
and aesthetic discursive artefacts, as will be illustrated in 
the next section. These visual representations can help to 
identify meaning in da- ta as well as critically reflect on 
the algorithmic mechanics. Experimental techniques open 
a window for dialogic interpretation that surpasses 
abstract information visualisation and traditional carto- 
graphic representations. 

2.4 Explorative Tools for Personal Spatial Data 
Analysis 
Recent developments in the context of openly accessible 
web technologies have led to a democratisation of coding 
tools and means of production. This development has 
also brought about a variety of tools for visualising, 
exploring, and reflecting upon personal data. The 
majority of these tools and experimental techniques 
focuses on information visualisation (see overview by 
Huang et al. 2015) and interfaces for personal photo 
collections (e.g. Hyunmo & Shneiderman, 2000; Thudt et 
al. 2013). A small subset of tools explores visualisations 
as a means of accessing personal spatio-temporal data. 
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We have identified two directions or types of projects 
within this subset that are important to our approach. Of 
these two types we describe an exemplary project each in 
more detail. The first group of projects focuses on 
moments, similar to many personal photo collection inter- 
faces, for instance the prototype Visits by Thudt et al. 
(Thudt et al. 2013; Thudt et al. 2016), shown in Figure 1. 

 
Fig. 1. “Visits showing a location history of six months using a 
map-timeline approach. This map / timeline hybrid segments 
the data into stays at places, revealing more information about 
the temporal aspects of the data.“ (Thudt et al. 2013:1) 

Through the aggregation and clustering of spatio-
temporal data, timeline-like visualisations are created that 
highlight specific time periods. In Visits, those time 
periods are split into smaller periods based on spatial 
activity. Next to a contextualising map that helps the 
reader understand the spatial relationships, the linearity of 
time dictates the appearance of the main visual elements. 
This first group of tools, exemplified by Visits, emanates 
from specific moments in space and time. The second 
group of tools also uses data aggregation, but instead of 
focusing on singular spatio-temporal events, they provide 
an overview and summaries of the da- ta. This puts them 
in a direct relationship with life-logging visualisations. A 
good example for such an application is the Shifted Maps 
prototype (Otten et al. 2015). Shifted Maps uses activity 
data to create spatial clusters and visualise the 
relationships between them in three different dimensions: 
the position of a location or location cluster; the time it 
takes to travel between nodes; as well as how frequently 
the links between locations are used. 

 
Fig. 2.  “The Shifted Maps visualisation (a) and three viewing 
modes for spatial (b), temporal (c), and frequency (d) networks 
of places.“ (Otten et al. 2015:1) 

While our approach to some extent bears a similarity to 
these tools, we are neither interested in summaries nor in 
a spatial aggregation. Instead, we emphasize the temporal 
dimension and map the results onto the geographic space, 
resulting in an overview of spatial behaviour. 

The projects described above, as well as our own 
endeavour strongly build upon principles of time 
geography. This concept was largely conceptualised in 
the 1960s and 70s by the social geographer Hägerstrand 
(Hägerstrand, 1970) and investigates social dynamics in a 
spatio-temporal context. This new wave of projects takes 
a quantitative, data-driven approach to time geography. 
Therefore, one might say, that the trajectories we are 
analysing in the next chapter are digital counterparts to 
Hägerstrand’s “life paths” (Hägerstrand, 1970:10-11). 

3. Algorithmic Approach 
Informed by the theories outlined in section 2, we base 
our approach on the supposition that mental maps are 
influenced by many external stimuli, one of them being 
the way we move through a city (Chorus and 
Timmermans 2010; Mondschein et al. 2010). Our 
movements change the way we experience the physical 
world and thus influence the shaping of mental maps. In 
our approach we focus on the mode of transport as one 
such experiential factor, which builds upon work by 
Mondschein et al., who reported that active or passive 
navigation influences the quality (richness of detail) of 
mental maps (Mondschein et al. 2010). Following this 
supposition, our algorithm tries to calculate the personal 
level of potential memorisation or spatial knowledge of a 
certain area. The calculated value is based on trajectory 
data and the trajectory’s mode of transport: from the 
highest value for walking, to cycling, to the lowest value 
for motorised transport. The term (potential) 
memorisation might at first sight seem ambiguous. The 
term memorisation is often used in contexts of intentional 
learning, in such, describing how information is moved 
from the working memory to the long-term memory. In 
our case, we rather describe the acquisition of knowledge 
of a certain area. Still, the repetitive interactions and the 
type of interactions with a certain area help us estimate 
the quality of spatial knowledge. Therefore, we decided 
to use the term (spatial) memorisation. 
The trajectories are sourced from personal activity data, 
sometimes referred to as lifelogging data. The term, as it 
is currently being used, gained attention with the rise of 
smartphones that were logging    data on their users, 
including GPS trajectories, compass and accelerometer 
data. Using machine-learning, these datasets are now 
interpreted and grouped into activities. By calculating 
speed, rhythm, and movement patterns, algorithms detect 
the mode of transport and can differentiate between 
walking, running, cycling, riding a train or travelling on 
an airplane (Lau 2012; Pennanen & Kyrölä 2013). While 
older research on personal activity data was primarily 
reliant on GPS trajectories (Spek et al, 2009), this new 
generation of activity data allows more in-depth analysis 
of individual’s activity. Even though latest tracking 
devices store a richer set of dimensions in activity data, in 
this paper we will only focus on GPS trajectories 
combined with the classification of the mode of transport 
for those trajectories, in order to get insights into one 
aspect of a person’s mental map, the knowledge or rather 
memorisation of certain spatial areas. To be precise, for 
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our prototypical implementation and study we used data 
gathered through the Moves App (ProtoGeo 2016). 

3.1 Data Aggregation, Cleaning and Organization 
 
The data collected by the Moves application can be 
downloaded as JSON files1.. The JSON contains the 
user’s trajectories for a specified time period. The Moves 
application is constantly creating those trajectories based 
on a GPS signal. Technically, every trajectory consists of 
a GeoJSON linestring (Butler et al. 2008), a timestamp, 
and the classification of the mode of transport. Most 
activity logging devices and applications have to be 
cautious with their power consumption. Consequently, 
the precision of the generated georeferenced trajectories 
is not ideal. One type of error is variation in the data, 
which means that even though a set of trajectories 
represent trips on the same road, they will be off by a few 
meters in any direction. We have factored this in by 
implementing buffers as described in the next section. 
The second error are points that are completely off the 
track. To remove such points, we ran statistics on the 
whole trajectory set of the individual user and calculated 
average distances between points for each mode of 
transport, which allowed us to re- move outliers and 
replace them with new points between the prior point and 
the next. Even though the new point will still likely be off 
track, it gives us a better dataset than with the original 
outliers. 
In addition, the Moves App tries to snap start- and 
endpoints of trajectories to locations gathered from 
Foursquare (Foursquare 2014). In cases where no mapped 
start- and endpoints existed, we used a buffer of 20 
meters to generate new locations and mapped them onto 
the dataset. The 20-meter buffer is needed since points 
for one location will not be exactly the same due to GPS 
inaccuracy. This procedure created a cleaned dataset of 
locations as well as trajectories connecting those 
locations. 

3.2 Temporal Data Clustering and Network Analysis 
On the basis of the cleaned locations and trajectories, we 
set out to map the level of assumed spatial knowledge 
over certain areas by deriving a value for the potential 
level of memorisation based on the mode of transport. 
Mondschein et al. (Mondschein et al. 2010) did not 
develop a formula to calculate these levels, their findings 
rather indicate an order of memorisation potential for 
various transport modes. We used their findings and 
developed a formula that translates visits of a certain part 
of town by a certain mode of transport into a potential 
memorisation level that can be used in algorithmic 
calculations (henceforth referred to as “Potential 
Memorisation Index”, or PMI). This formula serves only 
as a starting point for our research and has to be refined 
by more user studies as discussed in section 3.3. Based on 
                                                           
1 Some of the data that can be downloaded from the Moves App 
will be corrupt. We have included a repair script in the repository 
mentioned at the end of the paper.  

the order introduced by Mondschein et al., we used a 
logarithmic curve that represents an exponential learning 
curve with a limit. At a certain level of knowledge, each 
additional spatial interaction will only increase the value 
of the PMI by a very small amount. 
 
index =  log ( 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑠𝑠_𝑣𝑣𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑑𝑑 + 1 )5.7 ∗ 𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑝𝑝𝑜𝑜𝑟𝑟𝑡𝑡_𝑚𝑚𝑜𝑜𝑑𝑑𝑒𝑒 
Fig. 3. Memorisation index, per transport mode (motorised 
transport = 1, cycling = 2 and walking = 3) 2 

When combining the PMI from each transport mode, the 
highest value is chosen. If a user passes a location x 
times, for example with motorised transport, the formula 
only generates a very low index. 
But if she also walked through the area y times, a higher 
value is generated. The higher value derived from the 
walking activity is chosen for further calculations. With 
these PMIs at hand, we created a 50-meter raster and then 
intersected the grid cells with the trajectories using a 
buffer of additional 20 meters to overcome the precision 
issue (section 3.1), which resulted in a heat-map-like 
visualisation. Since cities are not made up of 50-meter 
grid cells, we chose buildings as our final projection 
canvas and calculated the PMI for each building. The 
building’s geometries are sourced from Open- StreetMap 
(OpenStreetMap 2016). 

 
Fig. 4. Trajectories mapped onto buildings. On top of the 
buildings, the network structure be- tween the walking islands is 
visualised. Colour-scale: from white unknown to black well 
known buildings. 3 

Looking at the resulting visualisation (see Fig.4), we 
identified areas with high PMIs, mainly resulting from 
walking activities, which we called “walking islands”. 
Those islands were located across the city and connected 
by other modes of motorised transport (e.g. under- 

                                                           
2 Moves successfully classifies running, walking, and cycling. 
Motorized transport modes depend on the device. Some devices 
can differentiate between various types, whereas others just return 
the category transport. Therefore, we use the category transport for 
all motorised modes.  
3 All exemplary visualisations are generated from the first author’s 
personal activity data from the last 12 month reduced to the extent 
of the city of Berlin. All visualisations shown in section 3 are web-
based, interactive, and can be explored.  
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ground). To explore those connections of known areas, 
we created a network graph on top of the islands, 
highlighting the connections be- tween islands and their 
respective strength. Strength was calculated through the 
number of trips, as well as modes of transportation and 
time spent on trips between islands (Figure 5). This 
network graph was then translated into a force-directed 
graph-like concept, allowing us to reorganise the islands 
depending on their edges. As a result, (see Figure 6), a 
new city layout emerged that represents the movement 
and the associated personal experience inspired by the 
visualisations of the Situationist International. 

 
Fig. 5 & 6. On the left, the same network represented in a 
situationist fashion with a manual projection and weighted links 
(arrows). On the right, using a force directed graph method, the 
city layout is rearranged and distorted by the suppression of 
distance. 

3.3 Evaluation of Clusters and Model 
As mentioned in the previous section, several 
uncertainties become apparent when implementing the 
concept of Mondschein et al. in an algorithmic approach 
(apart from the uncertainty of the data as de- scribed in 
section 3.1). In order to improve our modelling approach, 
we therefore conducted a preliminary user study with our 
initial algorithm that incorporates feedback on the 
assumed level of memorisation. 
Recruiting participants for this kind of experiment poses 
a challenge, as they need to provide us with their personal 
activity data. Nonetheless, we were able to recruit five 
participants, three male, two female, between the ages of 
25 and 45, all currently living in Berlin. 
Patterns of movement through urban space change across 
time, for example due to switching jobs or moving to a 
new place. Thus, we segmented the data on the time axis, 
whereby the dataset for each participant represents only 
their personal data from last 12 months. This means that 
for every one of the five participants we used one year of 
data for the metropolitan region of Berlin / Brandenburg. 
We also accounted for how long each participant has 
already been living in Berlin, which was shown to have 
no impact on the evaluation results. 
For the test we selected 22 locations, with a wide range of 
algorithmically-generated potential memorisation values 
derived from the mix of transport modes. In addition, we 
added three locations presumably unknown to the user (at 
least based on the data we received). We created a web 
interface in which the user would receive a 360° image of 
each location, using Google Street View. The user could 
change the angle of the image, but not the location. The 
users were then asked if they knew the location. If so, 
they were asked to pin-point the location on a map. If the 

user did not know the location, the correct position was 
disclosed on the map. If the user recognised the area from 
the image, or knew the area indicated on the map, they 
were asked to rank their knowledge on a scale from 1 to 
6. From user feedback we learned that in some cases the 
Google Street View images were quite old and therefore 
hard to identify. Thus, we allowed people to also rank 
their knowledge solely based on the position indicated on 
the map. This applied in cases when they were not able to 
identify the location based on the image, but later saw on 
the map that they indeed knew the location. 
Our study investigated the performance of our 
algorithmic approach by comparing the PMI of our 
algorithm and the reported response from the users. With 
such a small sample it is difficult to discernibly implicate 
a correlation or a significant effect, but there is a clear 
trend in the data, which indicates that our algorithm, even 
in this untrained phase, performs well. Figure 7 and 8 
show that for a high memorisation response our algorithm 
also calculated a high PMI. Returning to Mondschein et 
al.’s theory, we see in Figure 9 that are- as with low 
memorisation responses show less walking and cycling 
and more motorised transport modes. 

 
Fig. 7, 8 & 9. The x-axis represents the memorisation response 
from participants. In fig. 7 and 8 the y-axis represents the 
algorithmically-calculated potential memorisation index. Figure 
7 shows the raw data points with averages (red) and fig. 8 an 
analogous box-plot with medians (red). Figure 9 visualises the 
percentage for modes of transport for each memorisation 
response value. Green: walking, purple: cycling, and blue: 
motorised transport 

4. Reflective Practices 
In addition to the visualisations in Fig. 4-6, we mapped 
the PMI onto buildings as their height, creating a three-
dimensional space. As laid out in section 2, our approach 
is informed by research on mental maps and 
psychogeography. Drawing on this, we developed a 
visualisation artefact that deliberately disregards 
cartographic rules and representational precision. The 3-
dimensional physical model of the transformed space (see 
Figure 10) was created by applying rapid prototyping 
techniques. With this physical model we hope to 
encourage reflection on the perception of urban structures 
and the identification of spatial manifestations. The city 
that served as the backdrop on which the subjective 
experience of urban space was made and gathered in the 
form of movement data is now embodied by the distorted 
proportions and metamorphic shapes that are a dominant 
feature of the artefact. The artefact should rather trigger 
personal reflection than analytic exploration. It can be 
read in the reflection of Jameson’s stance on cognitive 
mapping as the “suppression of distance […] and the 
relentless saturation of any remaining voids and empty 
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places” (Jameson 1988: 351), while it also addresses the 
individual experience by means of aesthetic 
interpretation. 

 
Fig. 10 & 11. Images of the 1meter x 1meter in size physical 
model, generated from the potential memorisation indices. 

5. Applications & Future Works 
In our next step of evaluation, we will include a larger 
sample group to help us improve our algorithm. 
Furthermore, we want to focus on long-time potential 
memorisation approaches (forgetting areas, rememorising 
areas, changes in the (built) environment), to improve the 
modelling. In addition, we believe our approach, of 
choosing the mode of transport with the highest resulting 
PMI, should be reconsidered. As Tversky suggested, our 
mental maps are derived from all interactions and 
experiences (Tversky, 1993). Therefore, we should be 
combining all PMIs from all different modes of transport. 
When we are able to increase the precision of our 
method, we see numerous possible applications that go 
beyond personal reflection. Those applications include 
improved recommendation methods for location-based 
services or personalised routing services. Further- more, 
the comparison of several individual visualisations of 
personal activity data could also act as a vantage point 
from which the social and political conditions of 
accessibility could be traced. By visualising certain 
aspects of mental maps based on personal activity data 
we could be able to highlight “projections and repressions 
in the form of 'go' and 'no-go' space" (Jenks 1995). 
From a more data-driven and visualisation-centric 
perspective we want to refine our algorithms to classify 
regions by their usage type. Most existing work is using 
data from a large number of individuals to classify areas. 
Using only individual data has not been the focus of this 
work so far. We regard this aspect as especially 
promising as it would allow us not only to put more 

emphasis on the personal perspective, but also to focus on 
privacy and personal data protection. 

6. Conclusion 
Informed by the theoretical perspective of mental maps 
presented in section 2.1 and 2.2, we provide a data-driven 
and quantitative perspective of the discourse on mental 
maps. At the same time, we are aware of the complexities 
of mental maps and do not try to answer the question of 
how to visualise mental maps in general. Thus, we have 
limited our scope to subjective experiences of the urban 
space on the basis of movement through the city. For this 
purpose, movement data from self-tracking apps serves as 
our input phenomena. We presented an algorithm to 
create a PMI based on mode of transport, inspired by the 
works of Mondschein et al. The algorithm showed 
promising results in the preliminary user study. 
Although commercial applications like routing services 
or location recommendation services might also benefit 
from our algorithm, we above all seek to motivate people 
to question their own perception of the physical world. 
Through the visualisations, especially the physical model, 
we hope to enable new perspectives on personal spatial 
data and behavioural patterns in urban space. 

7. Acknowledgements 
The code required to run the previously described 
calculations and to create the visualisations shown in this 
paper are available on GitHub: github.com/sebastian-
meier/MentalMaps. 

8. References  
Butler H, Daly M, Doyle A (2008) GeoJSON 

Specification. In: geojson.org. 
http://geojson.org/geojson-spec.html. Accessed  1  Nov  
2014 

Caduff D, Timpf S (2008) On the assessment of landmark 
salience for human navigation. Cogn Process 9, pp 249–
267. 

Chorus C, Timmermans H (2010) Determinants of Stated 
and Revealed Mental Map Quality: An Empirical Study, 
Journal of Urban Design 15 (2), pp 211-226 

Debord G (1955) Introduction to a Critique of Urban 
Geography. Les Lèvres Nues #6, Transla- ted  by  Ken  
Knabb.  
http://www.cddc.vt.edu/sionline/presitu/geography.html 

Foo Patrick, W. Warren, A. Duchon, M. Tarr (2005) Do 
Humans Integrate Routes Into a Cogni- tive Map? Map-
Versus Landmark-Based Navigation of Novel Shortcuts. 
Journal of Experi- mental Psychology, 31 (2), pp 195-
215. American Psychology Association 

Foursquare (2014) Foursquare for Developers. 
developer.foursquare.com. 
https://developer.foursquare.com/. Accessed 4 Nov 
2014 

Hägerstrand, Torsten (1970). "What about people in 
regional science?". Papers of the Regional Science 
Association. 24 (1), pp 6–21 

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on 
submitted abstracts | https://doi.org/10.5194/ica-proc-1-76-2017 | © Authors 2017. CC BY 4.0 License.



   7 of 7 

 

Hintzman Douglas L., C. O’Dell, D. Arndt (1981) 
Orientation in Cognitive Maps. Cognitive Psychology 
13, pp 149-206. Academic Press Inc 

D. Huang, M. Tory, B. A. Aseniero, L. Bartram, S. 
Bateman, S. Carpendale, A. Tang, and R. Woodbury 
(2015) Personal visualization and personal visual 
analytics. TVCG, 21(3), pp 420–433. 

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on 
submitted abstracts | https://doi.org/10.5194/ica-proc-1-76-2017 | © Authors 2017. CC BY 4.0 License.


	Psychogeography in the Age of the Quantified Self — Mental Map modelling with Georeferenced Personal Activity Data
	1. Introduction
	2. Personal (Mental) Map
	2.1 Academic Perspectives: Cartography and Cognitive Sciences
	2.2 Psychogeography as Political Practice
	2.3 Duality
	2.4 Explorative Tools for Personal Spatial Data Analysis

	3. Algorithmic Approach
	3.1 Data Aggregation, Cleaning and Organization
	3.2 Temporal Data Clustering and Network Analysis
	3.3 Evaluation of Clusters and Model

	4. Reflective Practices
	5. Applications & Future Works
	6. Conclusion
	7. Acknowledgements
	8. References



