

Experiments to Distribute Map Generalization Processes

Justin Berli,a Guillaume Touya,a Imran Lokhat,a and Nicolas Regnauldb

a Univ. Paris-Est, LASTIG COGIT, IGN, ENSG, F-94160 Saint-Mande, France; firstname.lastname@ign.fr
b 1Spatial, Cambridge, United Kingdom; Nicolas.regnauld@1spatial.com

Abstract: Automatic map generalization requires the use of computationally intensive processes often unable to deal
with large datasets. Distributing the generalization process is the only way to make them scalable and usable in practice.
But map generalization is a highly contextual process, and the surroundings of a generalized map feature needs to be
known to generalize the feature, which is a problem as distribution might partition the dataset and parallelize the
processing of each part. This paper proposes experiments to evaluate the past propositions to distribute map
generalization, and to identify the main remaining issues. The past propositions to distribute map generalization are first
discussed, and then the experiment hypotheses and apparatus are described. The experiments confirmed that regular
partitioning was the quickest strategy, but also the less effective in taking context into account. The geographical
partitioning, though less effective for now, is quite promising regarding the quality of the results as it better integrates
the geographical context.

Keywords: Generalization, Partitioning, Parallelization

1. Introduction
Automatic map generalization processes are
computationally intensive, and they are most of the time
unable to deal with the size of real region wide or
countrywide geographical datasets. Distributing map
generalization processes can help to both reduce the
amount of data processed at once, and reduce the
computation time by parallelizing the processes. But map
generalization is a well-known holistic problem (Bundy
et al 1995), as an automatic system needs to analyze the
geographical context of any feature to decide what the
best operation to apply is. If generalization is distributed,
there is a major risk that quality might be damaged by
hiding some parts of the geographical context. This
problem is illustrated in Figure 1 with an example on
road generalization, which needs some large con-text to
decide what the important roads in an area are.
Some first proposals have been made to distribute
generalization processes in the recent years (Chaudhry &
Mackaness 2010), (Briat et al 2011), (Thiemann et al
2013), (Stanislawski et al 2015). But there is still no
general guidelines on how to distribute a generalization
process given the characteristics of the process and the
dataset. That is why we propose to conduct some
experiments to compare existing approaches, to analyze
how much they can process large datasets without
damaging the geographical context too much.
The second part of the paper describes the key problems
of distributing generalization processes (partitioning,
distributing context, parallelizing and reconciliation) and
analyzes the approaches of each problem in the literature.
Then, the third part describes how we conducted our
experiments. The fourth part shows and discusses the
results obtained and the fifth part draws some conclusions
and discusses further work.

Fig. 1. To generalize the roads of the center blue partition
without surrounding context, it is not possible to consider the
pointed road as the most important one, which it is considering
this missing context (Source: @OpenStreetMap contributors).

2. Key Problems to Distribute Generalization
Processes

2.1 Partitioning
The first step to distribute a generalization process is to
partition a large dataset into parts that are small enough to
be manageable by the process. Two main approaches
exist and have been tried in the literature: regular
partitioning and geographical partitioning.
Regular partitioning includes two methods, the use of a
regular (often rectangular) grid, or the use of a quad tree.
Regular grids have been used for land use generalization
by (Thiemann et al 2011), and for most generic processes
in (Briat et al 2011) and (Thiemann et al 2013). The size
of the grid is adjusted based on the amount of data that
can be found in one cell of the grid. The quad tree is a
smarter version of the regular grid with smaller cells used
in more dense areas, and (Briat et al 2011) showed that it
can go faster than a simple regular grid.
An alternative strategy, described in (Chaudhry &
Mackaness 2008), uses a geographical partitioning that

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-8-2017 | © Authors 2017. CC BY 4.0 License.

mailto:Nicolas.regnauld@1spatial.com

 2 of 6

would better capture the necessary geographical context
while cutting data into small parts. A geographical
partitioning can simply use features like administrative
boundaries, as the US counties in (Briat et al 2011).
(Chaudhry & Mackaness 2010) proposed a combination
of a regular grid and a geographical partitioning based on
geomorpho-logical regions, for DTM generalization.
(Touya 2010) proposed a geographical partitioning based
on main landscapes (urban, rurban, rural, mountain areas)
with consideration for size (e.g. rural areas are cut by
network elements and spaces without buildings to keep
them small enough). (Thiemann et al 2013) proposes to
cluster data based on proximity (Anders 2003) to create
meaningful partitions.

2.2 Distribution of Geographical Context
Once a partitioning technique has been chosen, it is
necessary to add a mechanism to restore some kind of
geo-graphical context, at least for the features that are
located near the boundary of a partition cell. The main
proposition in the literature is to provide a buffer area
around the partition where data is added for context, but
not generalized by the process that handles the partition
cell (Briat et al 2011), (Thiemann et al 2011). One
difficulty here is to find the buffer size that gives enough
context without making the partition cell too large to be
processed. (Thiemann et al 2013) proposes a
classification of the generalization operations that
requires a large context, and the ones that can be
triggered without any regard for the context. For instance,
there is no need to look at the neighbors to simplify the
shape of a building polygon, but network selection
requires a large context (Fig. 1).

2.3 Parallelization
Different methods exist to parallelize the processes, even
if the differences are more technical than conceptual.
Parallelizing a process means that several nodes, i.e. cells
of the partition, are processed in parallel by different
computer cores, that can be in a same machine (Briat et al
2011), or not, and even in a machine cluster (Stanislawski
et al 2015). There are some interesting details to tackle:
for instance if the system allows multiple or single reads
or writes on the dataset, or if some asynchronous
mechanisms are used for adjacent partition cells (Briat et
al 2011).
If the Map/Reduce framework is used for parallelization
(Thiemann et al 2013), there are also implications for the
way processes are implemented, and reimplementations
might be required.

2.4 Reconciliation
The final issue is the reconciliation of the data processed
in parallel, i.e. decide what to do if a feature has been
included in several partition cells. (Thiemann et al 2013)
calls this step composition. (Briat et al 2011) use an
attribute field on features that says if it has been
processed, and only the first processed partition is able to
write the result on the feature at the reconciliation step.
(Thiemann et al 2011) cut the features at the limits of the

partition and reconciliate by merging the cut parcels once
generalized. However, cutting features is dangerous as
shown in (Chaudhry & Mackaness 2008) with the
example of Douglas & Peucker algorithm (Douglas &
Peucker 1973) that fixes the initial/final vertices of the
simplified lines, so more line cuts means more fixed
points and less quality in generalization.
(Thiemann et al 2013) discusses three methods for
reconciliation: selection (objects on the boundary of
partition can be selected in only one partition cell), cut
and merge, and match and adjust (objects are generalized
in parallel and their new representation is matched and
adjusted).

3. Description of the Experiments

3.1 Hypotheses
Large datasets can cause two problems when generalized:
too long processes and crashes because of the amount of
data to process. The distribution techniques have to find
the balance between computation time, the maximum
amount of data processed at once, and the cartographic
quality of the generalized map. We made four hypotheses
about this balance between the three objectives of
distribution:

− Optimizing time computation, or the amount of
processed data does not optimize cartographic
quality (H1).

− Regular partitioning is a better choice for non-
contextual processes (H2).

− Geographical partitioning is better for contextual
processes (H3).

− There is no generic best distribution method, it
may depend on data types and processes (H4).

− Distribution is not really platform dependent
(H5).

3.2 Case Study
We used a large dataset to experiment different
distribution strategies, extracted from IGN (the French
national mapping agency) topographic database that
contains geographical data with a 1 meter geometric
resolution. Data from Reunion Island was used as input
data in our experiments. Reunion Island located in the
Indian Ocean has been chosen mainly because of the
variety of geographical features that it presents (dense
cities, rural areas, dense hydrographic network, etc.), on
an area large enough (2 512 km²) to cause issues for
many non-distributed processes. We processed buildings,
roads, rivers and coastlines from this dataset.
The major part of the experiments was conducted on
CartAGen (Renard et al 2010), that is the module
dedicated to generalization in the open source
GeOxygene Java platform (Bucher et al 2012). For the
sake of simplicity, we distributed the processes of
CartAGen using the Java Parallel Processing Framework
(JPPF), which only requires minimum refactoring of the
code to distribute Java software. The cluster used to
process the data is composed of 5 standard desktop
computers, their computing power being uneven. Each

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-8-2017 | © Authors 2017. CC BY 4.0 License.

 3 of 6

computer has 4 cores, so is able to run four processes in
parallel. In order to test (H5), we also carried out
experiments with the commercial platform 1Generalise
from 1Spatial, that uses its own distributed system based
on Oracle Weblogic Server.
For the remainder of the paper, we call a node a unitary
element of the architecture able to run one process. In our
architecture a node is one core of one of the available
computers. We call a job the processing of a partition cell
by one node.
For the purpose of the tests, two algorithms were chosen:
the polyline simplification algorithm from (Visvalingam
& Whyatt, 1993) and the building squaring algorithm
currently developed at the IGN (Lokhat & Touya, 2016).
The simplification algorithm is contextual because it was
enhanced to avoid topological errors with the other lines
of the dataset. The squaring algorithm is not contextual,
each building being processed without any consideration
for its neighbors. A high parameter value (2000 square
meters) was chosen for the effective areas of the polyline
simplification algorithm to highlight possible topological
inconsistencies.

3.3 Description of the Experiments
Each distribution experiment was carried out with three
different configurations of available nodes to distribute
the process:

− A single computer with four nodes (a total of 4
nodes).

− Five computers, with a single node each (a total
of 5 nodes).

− Five computers with four nodes each (a total of
20 nodes).

3.3.1 Experiments with Regular Partitions
We first carried out experiments with the simplest
partitioning method, the rectangular grid. Two types of
entities are treated using this partitioning solution,
polylines (streams, roads and coastlines) and polygons
(buildings). Regarding lines, the regular rectangular grid
is implemented following two processing methods to
handle context (Fig. 2a and b): one creating a buffer
around each cell to provide a context for the
simplification of polylines; the other cutting each lines
according to the processed cell boundaries.
In the first method, it has been decided to use a buffer
that includes each of the eight surrounding cells (Fig. 2a).
The lines that intersect the buffer are loaded into
memory, then their centers (located on the line) are
calculated. If that point is inside the cell, the line will be
processed, if not, it will be used as a context for the
simplification algorithm in order to check any potential
topology error caused by line intersections. If the center
point of a line is located on the boundary of the cell, its
identifier is stored and it will be treated afterwards,
during the reconciliation stage. However, the error
checking is done with the initial version of the lines, not
the simplified ones, so intersections still might occur with
the simplified lines. To avoid this problem, some
asynchronous distribution should be used.

Fig. 2. Two strategies to handle context in a regular grid
partition: (a) a buffer area around each cell; (b) cutting features
at the edge of partition cells.

Fig. 3. Regular grid applied to building squaring: the building
centroid is used to assign a building to a cell; buildings with the
centroid on a partition edge are assigned to a final reconciliation
job.

In the second method (Fig. 2b), all the new lines created
during the splitting phase must keep an attribute
indicating the initial line id. This allows the reconciliation
stage to recreate initial lines by aggregating all the
sections that have the same attribute.
Processing buildings using the regular grid is the simplest
method to set up as the centroid of each entity defines in
which cell it will be processed (Fig. 3). When a centroid
is located on top of a cell's boundary, its identifier is
stored and the building is processed at the end, during the
reconciliation stage.
We also carried out experiments with a quad tree
partition, but the results highlighted a performance issue
in our implementation of the quad tree, making the quad
tree less effective than the regular grid, which is not
consistent with past research (Briat et al 2011). That is
why we do not present any result with the quad tree in
this paper.
3.3.2 Experiments with Geographical Partitions
The geographical partitioning methods use different types
of geographical features to make small regions. In or-der
to test (H4) that makes the assumption that geographical
partitioning are adapted to some features types but not to
all, it has been decided to work on three feature types to
offer a variety of results for them to be compared: roads,
rivers, coastlines. Three types of geographical
partitioning are also tested: administrative boundaries of

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-8-2017 | © Authors 2017. CC BY 4.0 License.

 4 of 6

cities, watershed extents or divisions based on the road
network.
The partitioning according to the administrative
boundaries as well as to the watershed extents is achieved
following the same workflow as for the segmentation
method. Lines are loaded, split, processed and
reconciliated the same way, only the mask changes, from
a regular grid it becomes a complex polygon geometry
(which will cause some issues discussed in the last
section).
The partitioning according to the road network was
performed on the 1Generalise platform. It uses areas
enclosed by road sections to create polygons which will
be used as partitions. All small partitions formed inside
the network are aggregated according to two main
parameters: the maximum number of partitions to be
merged and the maximum area allowed for a single
partition. This method produces partitions which have
various sizes but similar amount of data, producing
partitions smaller in dense urban areas and larger ones in
rural areas. This ensures that the processing time is fairly
homogeneous across the partitions, for a more efficient
load balancing across the grid of processing nodes. The
processing then follows the same workflow as the
previous method, cutting every line according to the
boundaries of the partitions. Choosing the roads as
partitioning features also helps keeping the number of
split features down, and therefore limits the need for
adding fixed points which are not ideal for the quality of
the result.

4. Results and Discussion

4.1 Operational Limitations
To properly understand the results, it is first mandatory to
consider the material limitations as well as the other is-
sues inherent to the method deployed. One has to take
into consideration the memory limits of every node which
happen when the partitions sent to the cluster hold too
many entities. This phenomenon is observable when the
regular grid used contains a small number of cells (Figure
4) or when the extent of the geographical object – such as
the administrative areas or the watersheds – is too large
(Figure 6); those can induce the presence of a large
number of lines or buildings to be treated at once by a
node. With more memory on each node, the balance
between speed and cell size could be different.
Another limitation lies in the use of too many partitions
that can lead to a significant growth in processing time.
Indeed, in that case, the implemented distribution
framework faces network congestions leading to failures
with some jobs. This is not a major problem because it
would be avoided by using a real grid architecture, and a
more sophisticated distribution framework than JPPF.
Finally, the hardware differences inside the cluster must
be considered, one of the processor being weaker than the
other four, the randomness of the node assignation can
lead to different results with the use of the same
architecture and the same number of partitions. We
believe that this is not a standard configuration, and it

may cause biases preventing the comparisons between
two strategies. So to over-come this limitation, we carried
out each experiment several times and picked only the
quickest results, i.e. the ones where the weak node of the
grid did not handicap too much the process.

4.2 Regular Grid
Concerning the results obtained with the regular
rectangular grid, the first thing to notice is the overall
lower speed of the method that cuts every line according
to the cells boundaries. The duration is around 2 to 3
times higher when using the contextual method (Fig. 4).

Fig. 4. Results of the experiments with a regular grid for the
generalization of rivers with the Visvalingam-Whyatt algorithm.

The difference increases along with the number of nodes
used in the cluster. That being mentioned, one must
consider the quality of the data obtained as well. The
results (one is showed in Fig. 4) show that there is a
minimum processing time around 20x20 grids, which
corresponds to 2.5x2.5 km cells on Reunion Island. We
can also see that the architecture with five computers and
four nodes by computer is the best one as predicted. The
fall in the number of generalized features in the case with
200x200 cells and a 5x4 architecture illustrates the
limitations of our framework, the high number of nodes
to manage leading to network congestion and job failures.
The method that splits the lines generates fixed points at
every partition boundary, as extremities are kept in place
during the simplification process. The contextual method
produces data showing no trace of the partitioning stage
as the algorithm considers the whole line while
simplifying. Fig. 5 shows an example where cutting lines
leads to a result very different from the buffer method
output: the line is less simplified. The number of lines to
reunite during the reconciliation stage then constitutes an
indicator of the quality of the obtained data; the more
lines needing to be aggregated, the worse the quality
become. This proves that (H1) is true: the method that
optimizes pro-cessing time and memory load does not
provide the best cartographic results.
In the case of the building squaring, a non-contextual
algorithm, the use of a regular rectangular grid provides
generalized buildings very quickly, and way more
quickly than the geographic partitioning. This result
shows that (H2) is true, there is no need for geographical
partitioning when the generalization operation is not
contextual. How-ever, that method is quite unstable and
sensitive to density differences: using too many cells
gives worse results, but with fewer cells, the ones with

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-8-2017 | © Authors 2017. CC BY 4.0 License.

 5 of 6

more building density crash because of the memory load.
As shown by Briat et al (2011) a quad tree based method
that makes more cells in dense areas would be the
optimal solution.

Fig. 5. Differences in the cartographic output for Visvalingam-
Whyatt simplification of rivers when using a buffer for context,
or when cutting lines.

4.3 Geographical Partitioning
First, both the use of administrative boundaries and
watersheds extent imply a significant limitation. The
complexity of the geometries used to split lines is too
important for the spatial query to be time-efficient. The
difference observable with the use of a similar number of
rectangular cells – which are simple-shaped polygons – is
really noticeable and makes geographical partitioning
ineffective for now. Another limitation is that the cells of
the geo-graphical partitions we used were too big
compared to the optimal cell size found with the previous
experiments. Further experiments are clearly necessary to
overcome these limitations that prevent us from asserting
that (H3) is true, i.e. geographical partitioning is better
for contextual generalization processes.
Nevertheless, our results give us hints on (H3). For
instance, the use of watersheds as masks to split water
streams, could be, if optimized, a way to enhance time-
efficiency while preserving the quality of the data.
Indeed, streams only cross watersheds boundaries at one
point, the outlet, and the results have a much better
quality (Fig. 6). Partitioning the dataset according to
zones derived from the road network allows the same
kind of principle as no road crosses another. The
limitation for now lies in the fact that the whole network
needs to be simplified before the creation of the actual
partitions. This can induce some issues, particularly if the
nodes composing the cluster have limited cache memory.
The results obtained using this method show that the
partitioning does not reflect on the quality of the
simplified roads.
More generally, it might be difficult to assert that (H3) is
true or false for all contextual processes. For instance,
Fig. 5 shows that river streams simplification mostly
requires the minimization of intersections between the
partition cells and the streams, while building typification
does require a view of the buildings neighborhoods to
identify and preserve patterns, which cannot be
guaranteed by a regular grid.

Fig. 6. Synthesis of the results for the simplification of lines
using geographical partitioning based on watershed ex-tents and
administrative limits.

These first results also suggest that (H4) might be true:
the best distribution strategy depends on the feature types
processed, and on the fact that the generalization process
itself is more or less contextual. Apart from the current
limitations we believe that the watershed based
partitioning is the best when processing only rivers with a
contextual algorithms such as simplification but also
selection that is often carried out by watershed analysis
(Stanislawski et al 2015).
The results obtained on the 1Generalise platform with the
road network based partitioning show similar patterns
between the number/size of cells and the processing time,
with slight differences that might be due to differences in
algorithm implementation and in the distribution
architecture. One obvious difference lies in the fact that
the pro-cessing nodes load the data in a local cache. This
slows down the process, but removes the risk of failure
due to lack of memory if the node is given a large area to
process. However, we think that the patterns are similar
enough to consider that (H5) is probably true: the
platform differences are not significant compared to the
differences due to partitioning and context handle
methods.

5. Conclusions and Future Work
The use of regular rectangular grid as a partitioning
method seems to be the most time-efficient, whatever the
type of entity treated (polylines or polygons). The
contextual method produces a better simplification, as the
partitioning grid does not interfere with the result.
However, it comes at a cost, as the processing time is
higher. Splitting the lines according to a rectangular grid,
even though it represents the quickest method, creates too
many fixed points and affects the quality of the simplified
polylines. The aesthetic aspect makes this method less
interesting than the contextual one. This is the main
reason why this solution won't be tested further and why
the future studies should focus on contextual strategies.
Concerning the partitioning using administrative or
watershed areas, the idea for a division taking the type of
entity into consideration is interesting and needs to be
investigated further. For now, the main problem
impacting the time-efficiency is the geometry of each
zone, perhaps a simplification of watersheds as well as
administrative areas could be a way to solve it. Then,

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-8-2017 | © Authors 2017. CC BY 4.0 License.

 6 of 6

more tests need to be run to see if this method proves to
be quicker than the contextual one with a minor loss of
quality. More generally, we plan to conduct much more
experiments, with other partitioning and reconciliation
methods, with generalization processes that require more
context than the simplification algorithms, and with more
robust distribution architectures.
For now, we only carried out experiments with the
processing of a single algorithm on a single layer of the
map, but a more realistic generalization processes needs
to handle all the map layers and orchestrate the
application of a large number of algorithms (Regnauld et
al 2014). If the assumption that the optimal distribution
strategy depends on the feature type and the amount of
required context is true, a complete generalization
process would require multiple distribution strategies,
which might not be a feasible solution. In order to step
up, and really make map generalization scalable, we have
to develop global distribution models, as 1Generalise
does, or maybe include the distribution issue into the
generalization orchestration models.

6. References
Anders, K.-H. (2003). A hierarchical graph clustering

approach to find groups of objects. In Proceedings of
5th ICA Workshop on Progress in Automated Map
Generalization, Paris, France.

Briat, M.-O., Monnot, J.-L., Punt, E. M. (2011).
Scalability of contextual generalization processing using
partitioning and paralleliza-tion. In Proceedings of 14th
ICA Workshop on Generalisation and Multiple
Representation, Paris, France.

Bucher, B., Brasebin, M., Buard, E., Grosso, E.,
Mustière, S., Perret, J. (2012). GeOxygene: Built on top
of the expertness of the french NMA to host and share
advanced GI science research results. In E. Bocher &
M. Neteler (Eds.), Geospatial free and open source
software in the 21st century (pp. 21–33). Berlin
Heidelberg: Springer.

Bundy, G. L., Jones, C. B., Furse, E. (1995). Holistic
generalization of large-scale cartographic data. In J.-C.
Müller, J.-P. Lagrange, R. Weibel (Eds.), GIS and
Generalisation: Methodology and Practice (pp. 106–
119). London: Taylor & Francis.

Chaudhry, O. Z., & Mackaness, W. A. (2008).
Partitioning techniques to make manageable the
generalisation of national spatial da-tasets. In ICA
Workshop on Generalisation and Multiple
Representation, Montpellier, France.

Chaudhry, O. Z., & Mackaness, W. A. (2010). DTM
generalisation: Handling large volumes of data for
Multi-Scale mapping. The Cartographic Journal 47(4),
360–370.

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for
the reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic
Information and Geovisualization 10(2), 112–122.

Lokhat, I., & Touya, G. (2016). Enhancing Building
Footprints with Squaring Operations, Journal of Spatial
Information Science 13, 33–60.

Regnauld, N. (2014). 1Generalise: 1Spatial's new
automatic generalisation platform. In Proceedings of
17th ICA Workshop on Gen-eralisation and Multiple
Representation, Vienna, Austria.

Regnauld, N., Touya, G., Gould, N., Foerster, T. (2014).
Process modelling, web services and geoprocessing. In
D. Burghardt, C. Duchêne, W. Mackaness (Eds.),
Abstracting Geographic Information in a Data Rich
World (pp. 198–225). Berlin Heidelberg: Springer.

Renard, J., Gaffuri, J., Duchêne, C. (2010). Capitalisation
problem in research - example of a new platform for
generalisation: Car-tAGen. In Proceedings of 11th ICA
Workshop on Generalisation and Multiple
Representation, Zurich. ICA.

Stanislawski, L. V., Falgout, J., Buttenfield, B. P. (2015).
Automated extraction of natural drainage density
patterns for the contermi-nous United States through
High-Performance computing. The Cartographic
Journal 52(2), 185–192.

Thiemann, F., Warneke, H., Sester, M., Lipeck, U.
(2011). A scalable approach for generalization of land
cover data. In S. Geertman, W. Reinhardt, F. Toppen
(Eds.), Advancing Geoinformation Science for a
Changing World (pp. 399–420). Berlin, Heidelberg:
Springer.

Thiemann, F., Werder, S., Globig, T., Sester, M. (2013).
Investigations into partitioning of generalization
processes in a distributed processing framework. In M.
F. Buchroithner (Ed.), Proceedings of the 26th
International Cartographic Conference, Dresden,
Germany.

Touya, G. (2010). Relevant space partitioning for
collaborative generalisation. In Proceedings of 12th ICA
Workshop on Generalisa-tion and Multiple
Representation, Zurich, Switzerland.

Visvalingam, M., & Wyatt, J. D. (1993). Line
generalization by repeated elimination of points. The
Cartographic Journal 30(1), 46–51.

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on
submitted abstracts | https://doi.org/10.5194/ica-proc-1-8-2017 | © Authors 2017. CC BY 4.0 License.

	Experiments to Distribute Map Generalization Processes
	1. Introduction
	2. Key Problems to Distribute Generalization Processes
	2.1 Partitioning
	2.2 Distribution of Geographical Context
	2.3 Parallelization
	2.4 Reconciliation

	3. Description of the Experiments
	3.1 Hypotheses
	3.2 Case Study
	3.3 Description of the Experiments
	3.3.1 Experiments with Regular Partitions
	3.3.2 Experiments with Geographical Partitions

	4. Results and Discussion
	4.1 Operational Limitations
	4.2 Regular Grid
	4.3 Geographical Partitioning

	5. Conclusions and Future Work
	6. References

