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Abstract: Automatic map generalization requires the use of computationally intensive processes often unable to deal 
with large datasets. Distributing the generalization process is the only way to make them scalable and usable in practice. 
But map generalization is a highly contextual process, and the surroundings of a generalized map feature needs to be 
known to generalize the feature, which is a problem as distribution might partition the dataset and parallelize the 
processing of each part. This paper proposes experiments to evaluate the past propositions to distribute map 
generalization, and to identify the main remaining issues. The past propositions to distribute map generalization are first 
discussed, and then the experiment hypotheses and apparatus are described. The experiments confirmed that regular 
partitioning was the quickest strategy, but also the less effective in taking context into account. The geographical 
partitioning, though less effective for now, is quite promising regarding the quality of the results as it better integrates 
the geographical context. 
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1. Introduction 
Automatic map generalization processes are 
computationally intensive, and they are most of the time 
unable to deal with the size of real region wide or 
countrywide geographical datasets. Distributing map 
generalization processes can help to both reduce the 
amount of data processed at once, and reduce the 
computation time by parallelizing the processes. But map 
generalization is a well-known holistic problem (Bundy 
et al 1995), as an automatic system needs to analyze the 
geographical context of any feature to decide what the 
best operation to apply is. If generalization is distributed, 
there is a major risk that quality might be damaged by 
hiding some parts of the geographical context. This 
problem is illustrated in Figure 1 with an example on 
road generalization, which needs some large con-text to 
decide what the important roads in an area are. 
Some first proposals have been made to distribute 
generalization processes in the recent years (Chaudhry & 
Mackaness 2010), (Briat et al 2011), (Thiemann et al 
2013), (Stanislawski et al 2015). But there is still no 
general guidelines on how to distribute a generalization 
process given the characteristics of the process and the 
dataset. That is why we propose to conduct some 
experiments to compare existing approaches, to analyze 
how much they can process large datasets without 
damaging the geographical context too much. 
The second part of the paper describes the key problems 
of distributing generalization processes (partitioning, 
distributing context, parallelizing and reconciliation) and 
analyzes the approaches of each problem in the literature. 
Then, the third part describes how we conducted our 
experiments. The fourth part shows and discusses the 
results obtained and the fifth part draws some conclusions 
and discusses further work. 

 

 
Fig. 1.  To generalize the roads of the center blue partition 
without surrounding context, it is not possible to consider the 
pointed road as the most important one, which it is considering 
this missing context (Source: @OpenStreetMap contributors). 

2. Key Problems to Distribute Generalization 
Processes 

2.1 Partitioning 
The first step to distribute a generalization process is to 
partition a large dataset into parts that are small enough to 
be manageable by the process. Two main approaches 
exist and have been tried in the literature: regular 
partitioning and geographical partitioning. 
Regular partitioning includes two methods, the use of a 
regular (often rectangular) grid, or the use of a quad tree. 
Regular grids have been used for land use generalization 
by (Thiemann et al 2011), and for most generic processes 
in (Briat et al 2011) and (Thiemann et al 2013). The size 
of the grid is adjusted based on the amount of data that 
can be found in one cell of the grid. The quad tree is a 
smarter version of the regular grid with smaller cells used 
in more dense areas, and (Briat et al 2011) showed that it 
can go faster than a simple regular grid. 
An alternative strategy, described in (Chaudhry & 
Mackaness 2008), uses a geographical partitioning that 
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would better capture the necessary geographical context 
while cutting data into small parts. A geographical 
partitioning can simply use features like administrative 
boundaries, as the US counties in (Briat et al 2011). 
(Chaudhry & Mackaness 2010) proposed a combination 
of a regular grid and a geographical partitioning based on 
geomorpho-logical regions, for DTM generalization. 
(Touya 2010) proposed a geographical partitioning based 
on main landscapes (urban, rurban, rural, mountain areas) 
with consideration for size (e.g. rural areas are cut by 
network elements and spaces without buildings to keep 
them small enough). (Thiemann et al 2013) proposes to 
cluster data based on proximity (Anders 2003) to create 
meaningful partitions. 

2.2 Distribution of Geographical Context 
Once a partitioning technique has been chosen, it is 
necessary to add a mechanism to restore some kind of 
geo-graphical context, at least for the features that are 
located near the boundary of a partition cell. The main 
proposition in the literature is to provide a buffer area 
around the partition where data is added for context, but 
not generalized by the process that handles the partition 
cell (Briat et al 2011), (Thiemann et al 2011). One 
difficulty here is to find the buffer size that gives enough 
context without making the partition cell too large to be 
processed. (Thiemann et al 2013) proposes a 
classification of the generalization operations that 
requires a large context, and the ones that can be 
triggered without any regard for the context. For instance, 
there is no need to look at the neighbors to simplify the 
shape of a building polygon, but network selection 
requires a large context (Fig. 1). 

2.3 Parallelization 
Different methods exist to parallelize the processes, even 
if the differences are more technical than conceptual. 
Parallelizing a process means that several nodes, i.e. cells 
of the partition, are processed in parallel by different 
computer cores, that can be in a same machine (Briat et al 
2011), or not, and even in a machine cluster (Stanislawski 
et al 2015). There are some interesting details to tackle: 
for instance if the system allows multiple or single reads 
or writes on the dataset, or if some asynchronous 
mechanisms are used for adjacent partition cells (Briat et 
al 2011). 
If the Map/Reduce framework is used for parallelization 
(Thiemann et al 2013), there are also implications for the 
way processes are implemented, and reimplementations 
might be required. 

2.4 Reconciliation 
The final issue is the reconciliation of the data processed 
in parallel, i.e. decide what to do if a feature has been 
included in several partition cells. (Thiemann et al 2013) 
calls this step composition. (Briat et al 2011) use an 
attribute field on features that says if it has been 
processed, and only the first processed partition is able to 
write the result on the feature at the reconciliation step. 
(Thiemann et al 2011) cut the features at the limits of the 

partition and reconciliate by merging the cut parcels once 
generalized. However, cutting features is dangerous as 
shown in (Chaudhry & Mackaness 2008) with the 
example of Douglas & Peucker algorithm (Douglas & 
Peucker 1973) that fixes the initial/final vertices of the 
simplified lines, so more  line cuts means more fixed 
points and less quality in generalization. 
(Thiemann et al 2013) discusses three methods for 
reconciliation: selection (objects on the boundary of 
partition can be selected in only one partition cell), cut 
and merge, and match and adjust (objects are generalized 
in parallel and their new representation is matched and 
adjusted). 

3. Description of the Experiments 

3.1 Hypotheses 
Large datasets can cause two problems when generalized: 
too long processes and crashes because of the amount of 
data to process. The distribution techniques have to find 
the balance between computation time, the maximum 
amount of data processed at once, and the cartographic 
quality of the generalized map. We made four hypotheses 
about this balance between the three objectives of 
distribution: 

− Optimizing time computation, or the amount of 
processed data does not optimize cartographic 
quality (H1). 

− Regular partitioning is a better choice for non-
contextual processes (H2). 

− Geographical partitioning is better for contextual 
processes (H3). 

− There is no generic best distribution method, it 
may depend on data types and processes (H4). 

− Distribution is not really platform dependent 
(H5). 

3.2 Case Study 
We used a large dataset to experiment different 
distribution strategies, extracted from IGN (the French 
national mapping agency) topographic database that 
contains geographical data with a 1 meter geometric 
resolution. Data from Reunion Island was used as input 
data in our experiments. Reunion Island located in the 
Indian Ocean has been chosen mainly because of the 
variety of geographical features that it presents (dense 
cities, rural areas, dense hydrographic network, etc.), on 
an area large enough (2 512 km²) to cause issues for 
many non-distributed processes. We processed buildings, 
roads, rivers and coastlines from this dataset.  
The major part of the experiments was conducted on 
CartAGen (Renard et al 2010), that is the module 
dedicated to generalization in the open source 
GeOxygene Java platform (Bucher et al 2012). For the 
sake of simplicity, we distributed the processes of 
CartAGen using the Java Parallel Processing Framework 
(JPPF), which only requires minimum refactoring of the 
code to distribute Java software. The cluster used to 
process the data is composed of 5 standard desktop 
computers, their computing power being uneven. Each 
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computer has 4 cores, so is able to run four processes in 
parallel. In order to test (H5), we also carried out 
experiments with the commercial platform 1Generalise 
from 1Spatial, that uses its own distributed system based 
on Oracle Weblogic Server. 
For the remainder of the paper, we call a node a unitary 
element of the architecture able to run one process. In our 
architecture a node is one core of one of the available 
computers. We call a job the processing of a partition cell 
by one node. 
For the purpose of the tests, two algorithms were chosen: 
the polyline simplification algorithm from (Visvalingam 
& Whyatt, 1993) and the building squaring algorithm 
currently developed at the IGN (Lokhat & Touya, 2016). 
The simplification algorithm is contextual because it was 
enhanced to avoid topological errors with the other lines 
of the dataset. The squaring algorithm is not contextual, 
each building being processed without any consideration 
for its neighbors. A high parameter value (2000 square 
meters) was chosen for the effective areas of the polyline 
simplification algorithm to highlight possible topological 
inconsistencies. 

3.3 Description of the Experiments 
Each distribution experiment was carried out with three 
different configurations of available nodes to distribute 
the process: 

− A single computer with four nodes (a total of 4 
nodes). 

− Five computers, with a single node each (a total 
of 5 nodes). 

− Five computers with four nodes each (a total of 
20 nodes). 

3.3.1 Experiments with Regular Partitions 
We first carried out experiments with the simplest 
partitioning method, the rectangular grid. Two types of 
entities are treated using this partitioning solution, 
polylines (streams, roads and coastlines) and polygons 
(buildings). Regarding lines, the regular rectangular grid 
is implemented following two processing methods to 
handle context (Fig. 2a and b): one creating a buffer 
around each cell to provide a context for the 
simplification of polylines; the other cutting each lines 
according to the processed cell boundaries.  
In the first method, it has been decided to use a buffer 
that includes each of the eight surrounding cells (Fig. 2a). 
The lines that intersect the buffer are loaded into 
memory, then their centers (located on the line) are 
calculated. If that point is inside the cell, the line will be 
processed, if not, it will be used as a context for the 
simplification algorithm in order to check any potential 
topology error caused by line intersections. If the center 
point of a line is located on the boundary of the cell, its 
identifier is stored and it will be treated afterwards, 
during the reconciliation stage. However, the error 
checking is done with the initial version of the lines, not 
the simplified ones, so intersections still might occur with 
the simplified lines. To avoid this problem, some 
asynchronous distribution should be used. 

 
Fig. 2.  Two strategies to handle context in a regular grid 
partition: (a) a buffer area around each cell; (b) cutting features 
at the edge of partition cells. 

  
Fig. 3.  Regular grid applied to building squaring: the building 
centroid is used to assign a building to a cell; buildings with the 
centroid on a partition edge are assigned to a final reconciliation 
job. 

In the second method (Fig. 2b), all the new lines created 
during the splitting phase must keep an attribute 
indicating the initial line id. This allows the reconciliation 
stage to recreate initial lines by aggregating all the 
sections that have the same attribute. 
Processing buildings using the regular grid is the simplest 
method to set up as the centroid of each entity defines in 
which cell it will be processed (Fig. 3).  When a centroid 
is located on top of a cell's boundary, its identifier is 
stored and the building is processed at the end, during the 
reconciliation stage. 
We also carried out experiments with a quad tree 
partition, but the results highlighted a performance issue 
in our implementation of the quad tree, making the quad 
tree less effective than the regular grid, which is not 
consistent with past research (Briat et al 2011). That is 
why we do not present any result with the quad tree in 
this paper. 
3.3.2 Experiments with Geographical Partitions 
The geographical partitioning methods use different types 
of geographical features to make small regions. In or-der 
to test (H4) that makes the assumption that geographical 
partitioning are adapted to some features types but not to 
all, it has been decided to work on three feature types to 
offer a variety of results for them to be compared: roads, 
rivers, coastlines. Three types of geographical 
partitioning are also tested: administrative boundaries of 
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cities, watershed extents or divisions based on the road 
network. 
The partitioning according to the administrative 
boundaries as well as to the watershed extents is achieved 
following the same workflow as for the segmentation 
method. Lines are loaded, split, processed and 
reconciliated the same way, only the mask changes, from 
a regular grid it becomes a complex polygon geometry 
(which will cause some issues discussed in the last 
section). 
The partitioning according to the road network was 
performed on the 1Generalise platform. It uses areas 
enclosed by road sections to create polygons which will 
be used as partitions. All small partitions formed inside 
the network are aggregated according to two main 
parameters: the maximum number of partitions to be 
merged and the maximum area allowed for a single 
partition. This method produces partitions which have 
various sizes but similar amount of data, producing 
partitions smaller in dense urban areas and larger ones in 
rural areas. This ensures that the processing time is fairly 
homogeneous across the partitions, for a more efficient 
load balancing across the grid of processing nodes. The 
processing then follows the same workflow as the 
previous method, cutting every line according to the 
boundaries of the partitions. Choosing the roads as 
partitioning features also helps keeping the number of 
split features down, and therefore limits the need for 
adding fixed points which are not ideal for the quality of 
the result. 

4. Results and Discussion 

4.1 Operational Limitations 
To properly understand the results, it is first mandatory to 
consider the material limitations as well as the other is-
sues inherent to the method deployed. One has to take 
into consideration the memory limits of every node which 
happen when the partitions sent to the cluster hold too 
many entities. This phenomenon is observable when the 
regular grid used contains a small number of cells (Figure 
4) or when the extent of the geographical object – such as 
the administrative areas or the watersheds – is too large 
(Figure 6); those can induce the presence of a large 
number of lines or buildings to be treated at once by a 
node. With more memory on each node, the balance 
between speed and cell size could be different. 
Another limitation lies in the use of too many partitions 
that can lead to a significant growth in processing time. 
Indeed, in that case, the implemented distribution 
framework faces network congestions leading to failures 
with some jobs. This is not a major problem because it 
would be avoided by using a real grid architecture, and a 
more sophisticated distribution framework than JPPF. 
Finally, the hardware differences inside the cluster must 
be considered, one of the processor being weaker than the 
other four, the randomness of the node assignation can 
lead to different results with the use of the same 
architecture and the same number of partitions. We 
believe that this is not a standard configuration, and it 

may cause biases preventing the comparisons between 
two strategies. So to over-come this limitation, we carried 
out each experiment several times and picked only the 
quickest results, i.e. the ones where the weak node of the 
grid did not handicap too much the process. 

4.2 Regular Grid 
Concerning the results obtained with the regular 
rectangular grid, the first thing to notice is the overall 
lower speed of the method that cuts every line according 
to the cells boundaries. The duration is around 2 to 3 
times higher when using the contextual method (Fig. 4).  

  
Fig. 4.  Results of the experiments with a regular grid for the 
generalization of rivers with the Visvalingam-Whyatt algorithm. 

The difference increases along with the number of nodes 
used in the cluster. That being mentioned, one must 
consider the quality of the data obtained as well. The 
results (one is showed in Fig. 4) show that there is a 
minimum processing time around 20x20 grids, which 
corresponds to 2.5x2.5 km cells on Reunion Island. We 
can also see that the architecture with five computers and 
four nodes by computer is the best one as predicted. The 
fall in the number of generalized features in the case with 
200x200 cells and a 5x4 architecture illustrates the 
limitations of our framework, the high number of nodes 
to manage leading to network congestion and job failures. 
The method that splits the lines generates fixed points at 
every partition boundary, as extremities are kept in place 
during the simplification process. The contextual method 
produces data showing no trace of the partitioning stage 
as the algorithm considers the whole line while 
simplifying. Fig. 5 shows an example where cutting lines 
leads to a result very different from the buffer method 
output: the line is less simplified. The number of lines to 
reunite during the reconciliation stage then constitutes an 
indicator of the quality of the obtained data; the more 
lines needing to be aggregated, the worse the quality 
become. This proves that (H1) is true: the method that 
optimizes pro-cessing time and memory load does not 
provide the best cartographic results. 
In the case of the building squaring, a non-contextual 
algorithm, the use of a regular rectangular grid provides 
generalized buildings very quickly, and way more 
quickly than the geographic partitioning. This result 
shows that (H2) is true, there is no need for geographical 
partitioning when the generalization operation is not 
contextual. How-ever, that method is quite unstable and 
sensitive to density differences: using too many cells 
gives worse results, but with fewer cells, the ones with 
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more building density crash because of the memory load. 
As shown by Briat et al (2011) a quad tree based method 
that makes more cells in dense areas would be the 
optimal solution.  

  
Fig. 5.  Differences in the cartographic output for Visvalingam-
Whyatt simplification of rivers when using a buffer for context, 
or when cutting lines. 

4.3 Geographical Partitioning 
First, both the use of administrative boundaries and 
watersheds extent imply a significant limitation. The 
complexity of the geometries used to split lines is too 
important for the spatial query to be time-efficient. The 
difference observable with the use of a similar number of 
rectangular cells – which are simple-shaped polygons – is 
really noticeable and makes geographical partitioning 
ineffective for now. Another limitation is that the cells of 
the geo-graphical partitions we used were too big 
compared to the optimal cell size found with the previous 
experiments. Further experiments are clearly necessary to 
overcome these limitations that prevent us from asserting 
that (H3) is true, i.e. geographical partitioning is better 
for contextual generalization processes. 
Nevertheless, our results give us hints on (H3). For 
instance, the use of watersheds as masks to split water 
streams, could be, if optimized, a way to enhance time-
efficiency while preserving the quality of the data. 
Indeed, streams only cross watersheds boundaries at one 
point, the outlet, and the results have a much better 
quality (Fig. 6). Partitioning the dataset according to 
zones derived from the road network allows the same 
kind of principle as no road crosses another. The 
limitation for now lies in the fact that the whole network 
needs to be simplified before the creation of the actual 
partitions. This can induce some issues, particularly if the 
nodes composing the cluster have limited cache memory. 
The results obtained using this method show that the 
partitioning does not reflect on the quality of the 
simplified roads.  
More generally, it might be difficult to assert that (H3) is 
true or false for all contextual processes. For instance, 
Fig. 5 shows that river streams simplification mostly 
requires the minimization of intersections between the 
partition cells and the streams, while building typification 
does require a view of the buildings neighborhoods to 
identify and preserve patterns, which cannot be 
guaranteed by a regular grid. 

 
Fig. 6.  Synthesis of the results for the simplification of lines 
using geographical partitioning based on watershed ex-tents and 
administrative limits. 

These first results also suggest that (H4) might be true: 
the best distribution strategy depends on the feature types 
processed, and on the fact that the generalization process 
itself is more or less contextual. Apart from the current 
limitations we believe that the watershed based 
partitioning is the best when processing only rivers with a 
contextual algorithms such as simplification but also 
selection that is often carried out by watershed analysis 
(Stanislawski et al 2015). 
The results obtained on the 1Generalise platform with the 
road network based partitioning show similar patterns 
between the number/size of cells and the processing time, 
with slight differences that might be due to differences in 
algorithm implementation and in the distribution 
architecture. One obvious difference lies in the fact that 
the pro-cessing nodes load the data in a local cache. This 
slows down the process, but removes the risk of failure 
due to lack of memory if the node is given a large area to 
process. However, we think that the patterns are similar 
enough to consider that (H5) is probably true: the 
platform differences are not significant compared to the 
differences due to partitioning and context handle 
methods. 

5. Conclusions and Future Work 
The use of regular rectangular grid as a partitioning 
method seems to be the most time-efficient, whatever the 
type of entity treated (polylines or polygons). The 
contextual method produces a better simplification, as the 
partitioning grid does not interfere with the result. 
However, it comes at a cost, as the processing time is 
higher. Splitting the lines according to a rectangular grid, 
even though it represents the quickest method, creates too 
many fixed points and affects the quality of the simplified 
polylines. The aesthetic aspect makes this method less 
interesting than the contextual one. This is the main 
reason why this solution won't be tested further and why 
the future studies should focus on contextual strategies.  
Concerning the partitioning using administrative or 
watershed areas, the idea for a division taking the type of 
entity into consideration is interesting and needs to be 
investigated further. For now, the main problem 
impacting the time-efficiency is the geometry of each 
zone, perhaps a simplification of watersheds as well as 
administrative areas could be a way to solve it. Then, 
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more tests need to be run to see if this method proves to 
be quicker than the contextual one with a minor loss of 
quality. More generally, we plan to conduct much more 
experiments, with other partitioning and reconciliation 
methods, with generalization processes that require more 
context than the simplification algorithms, and with more 
robust distribution architectures. 
For now, we only carried out experiments with the 
processing of a single algorithm on a single layer of the 
map, but a more realistic generalization processes needs 
to handle all the map layers and orchestrate the 
application of a large number of algorithms (Regnauld et 
al 2014). If the assumption that the optimal distribution 
strategy depends on the feature type and the amount of 
required context is true, a complete generalization 
process would require multiple distribution strategies, 
which might not be a feasible solution. In order to step 
up, and really make map generalization scalable, we have 
to develop global distribution models, as 1Generalise 
does, or maybe include the distribution issue into the 
generalization orchestration models.  
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