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Abstract: Wetlands are important and valuable ecosystems, yet, since 1900, more than 50% of wetlands have been lost 
worldwide. An example of altered and partially restored coastal wetlands is the Danube Delta in Romania. Over time, 
human intervention has manifested itself in more than a quarter of the entire Danube surface. This intervention was 
brutal and has rendered ecosystem restoration very difficult. Studies for the rehabilitation / re-vegetation were started 
immediately after the Danube Delta was declared as a Biosphere Reservation in 1990. Remote sensing offers accurate 
methods for detecting and mapping change in restored wetlands. Vegetation change detection is a powerful indicator of 
restoration success. The restoration projects use vegetative cover as an important indicator of restoration success. To 
follow the evolution of the vegetation cover of the restored areas, satellite images radar and optical of last generation 
have been used, such as Sentinel-1 and Sentinel-2. Indeed the sensor sensitivity to the landscape depends on the 
wavelength what- ever radar or optical data and their polarization for radar data. Combining this kind of data is 
particularly relevant for the classification of wetland vegetation, which are associated with the density and size of 
the vegetation. In addition, the high temporal acquisition frequency of Sentinel-1 which are not sensitive to cloud 
cover al- low to use temporal signature of the different land cover. Thus we analyse the polarimetric and temporal 
signature of Sentinel-1 data in order to better understand the signature of the different study classes. In a second 
phase, we performed classifications based on the Random Forest supervised classification algorithm involving the 
entire Sentinel-1 time series, then starting from a Sentinel-2 collection and finally involving combinations of Sentinel-1 
and -2 data.
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1. Remote sensing and restoring wetland
habitats
Wetland habitat is being restored throughout the world 
(Zedler & Kercher, 2005); however, achieving 
conservation goals and objectives requires knowledge of 
vegetation composition, structure, and change over time 
with respect to attributes such as percent cover, biomass, 
and plant diversity (Phinn et al. 1999). Therefore, there is 
a need to further develop, refine, and disseminate site- 
and landscape-level monitoring methods (Simenstad et 
al., 2006). Having developed criteria for selecting 
wetland sites to be restored or enhanced, wetland 
managers must prioritize the sites based on ecological 
and economic considerations (Klemas, 2013). Remote 
sensing techniques can provide a cost-effective means for 
selecting restoration sites and observing their progress 
over time. 
Remote sensing involves the acquisition of information 
about the Earth’s surface at a remote distance, usually by 
airplane or satellite (Jensen 2000). It offers tools to map, 
measure, model, and evaluate wetland restoration efforts 
in a cost-effective manner. The use of this technology in 
the ecological sciences is rapidly increasing because 
ecosystems such as wetlands can be monitored at various 

spatial and temporal scales (Jensen et al. 1995; Guo & 
Psuty 1997; Michener & Houhoulis 1997; Apan et al. 
2002; Heinl et al. 2006; Papa et al. 2006; Niculescu et al., 
2016). 
Despite the increasing use of remote sensing for wetland 
inventory and monitoring, there has been limited use of 
this technology in the restoration of wetlands (Phinn et al. 
1999; Hinkle & Mitsch 2005). Remote sensing is ideal 
for monitoring restored wetlands because it provides a 
high spatial and temporal intensity of measurements in 
relatively inaccessible and sensitive sites without the 
potential invasiveness that traditional field methods 
present to delicate habitat conditions, bird- nesting 
territories, and endangered species habitat (Schuman and 
Ambrose, 2003). In an ideal situation, remotely sensed 
images are acquired when decisions can be made about 
imagery specifications and field data collection that will 
make change detection accurate and applicable to the 
monitoring of a restoring wetland. 
Recent advancements in imaging science have provided 
finer spatial, spectral, and temporal resolution as well as 
reduced price. In addition, non-optical data sources such 
as radar data (e.g., SAR, RADAR) and laser altimetry 
(e.g., LiDAR), have been shown to add value when 
combined with optical remote sensing data (Ramsey et al. 
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1998; Rosso et al. 2005b; Niculescu et al., 2016). Change 
detection is an important tool for wetland restoration 
monitoring because it provides measurements of 
incremental changes that can be used for inventory and 
benchmark purposes; knowledge of these changes can 
then be integrated with adaptive management plans and 
used to target specific restoration goals (Tuxen et al., 
2008). 
The success of restoration, however, is difficult to assess. 
The degree of success for many of these restoration sites 
is still being debated, especially since there is no full 
agreement on criteria used to measure success. The 
creation, enhancement, or restoration of coastal habitats 
requires much time and constant attention (Klemas, 
2013). Remote sensing offers accurate automated 
methods for detecting change in restored wetlands. 
Vegetation change detection is a powerful indicator of 
restoration success. The restoration projects use 
vegetative cover as an important indicator of restoration 
success. 
Synthetic aperture radar (SAR) technology provides the 
increased spatial resolution that is necessary in regional 
wetland mapping, and SAR data have been used 
extensively for this objective (Bourgeau-Chavez et al., 
2005; Lang and McCarty, 2008; Novo et al., 2002). 
Radar has the capability of penetrating the plant cover 
canopy and detecting submerged sectors and soil surface 
moisture. Although the spatial resolution of radar images 
does not allow thorough and detailed habitat map- ping, 
these images are useful for mapping wetland vegetation. 
The radar polarimetry and polarimetric parameters 
contribute significantly to the improvement of vegetation 
identification based on polarization channels. 
Multipolarization and multi- frequency radar devices are 
also used for the classification of wetland vegetation 
depending on their wavelengths, polarizations and 
backscattering mechanisms and can be used to estimate 
the density and size of the vegetation. Microwave 
radiation polarization, like radar beam incidence angle 
and wave frequency, has long been acknowledged as an 
important parameter for object recognition and 
understanding object features. Access to the scattering 
matrix permits several analytical approaches and hence 
various ways of assessing the potential of multi-polarized 
radar images. One approach consists of synthesizing 
pixel-based signal strength, which should have been 
measured at the same frequency for any polarization 
configuration (linear and/or circular) (Niculescu et al., 
2015). The sensitivity of microwave en- ergy to water 
and its ability to penetrate vegetative canopies makes 
SAR ideal for the detection of the hydrologic features 
under vegetation. 
SAR image time series such as those provided by the 
Sentinel-1 satellite allow significant improvements in 
vegetation classification. The key advantage of satellite-
borne SAR imaging is its independence of cloud cover, 
and because it is an active sensing system, its 
independence of sun-induced reflection. Consequently, 
SAR imagery has become an important tool for 
distinguishing different vegetation classes. Recently, 

polarimetric SAR images have been analyzed using 
decomposition theorems such as alpha/entropy 
decomposition, which increases the accuracy of 
vegetation analysis from microwave data. However, there 
is a wide choice of remote-sensing satellites, radar, and 
optical. Whereas optical satellites usually operate in one 
imaging mode, radar satellites can be programmed to 
work indifferent configurations. The user must choose the 
polarization configuration, the incidence angle, and the 
spatial resolution associated with the chosen imaging 
mode. Combined approaches of using optical and 
microwave images can improve the vegetation analysis. 
Airborne laser instruments such as LiDAR represent 
innovative tools for management applications, including 
flood zone delineation, monitoring beach nourishment 
projects, and mapping vegetation (Niculescu et al., 2016) 
and changes along sandy coasts and shallow benthic 
environments due to storms or long-term sedimentary 
processes (Klemas, 2013). Identifying potential 
restoration sites and prioritizing them using ecological 
and economic criteria is by no means a simple task 
(Russell, Hawkins, and O’Neill, 2004; Thayer, 1992; 
White and Fennessy, 2005). The combined use of 
LIDAR, radar, and multispectral imagery can improve the 
accuracy of monitoring vegetation species discrimination 
and provide a better understanding of the 
topography/bathymetry and hydrologic conditions. 

2. Dataset 
We used the following satellite images in this study: 20 
Sentinel-1 images acquired between 9.10.2014 and 
01.04.2016 (table 2) and one Sentinel-2 image acquired 
on  
28.04.2016 in the restored areas in the northern part of 
the delta (Babina and Cernovca). The Sentinel-1 data 
were acquired in a time series that covered the entire 
growth season of 2015 and part of 2016. This enabled us 
to determine the influence of the time dimension and of 
the polarimetric dimension (VV and VH polarization are 
available) on the characterization and classification of the 
vegetation in the restored delta areas. 
 

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on 
submitted abstracts | https://doi.org/10.5194/ica-proc-1-82-2017 | © Authors 2017. CC BY 4.0 License.



   3 of 10 

 

Table 1: Sentinel-1 imagery used in this study 

Since it was first launched in April 2014, the Sentinel-1 
satellite has allowed specialists to monitor the earth’s 
surface day and night regardless of weather conditions 
and has transmitted high-resolution space images free of 
charge. The Sentinel 1 SAR mission is part of the 
Copernicus Programme – European Earth Observation 
Programme, which was previously called GMES (Global 
Monitoring for Environment and Security), of the 
European Space Agency. Placed on an orbit at an altitude 
of 693 km, Sentinel-1 operates in four data collection 
modes: the StripMap (SM) mode, the Interferometric 
Wide swath (IW) mode, the Extra-Wide swath (EW) 
mode and the Wave (WV) mode. Each mode provides 
different products with respect to spatial resolution and 
imaging swath. Sentinel-1 images are captured in C band 
(5.5 cm), and they may exhibit simple HH or VV 
polarization or double HH+HV or VH +VV polarization. 
The data used in our research were collected in the IW 
mode. This mode includes three sub-swaths, namely IW1, 
IW2 and IW3, which correspond to cyclical antenna 
deviations. This mode provides GRD (Ground Range 
Multilook Detected) and SLC (Single Look Complex) 
images made up of three IW (MDA, 2011). The GRD 
images are Multilook images (five looks for the IW 
mode) with less speckle noise and coarser space 
resolution. Although the SLC products have finer 
resolution, it is difficult to use them directly due to the 
phase information, which seems useless as it prevents 
extraction of additional information in certain cases. 
GRD image calibration is vital for viewing the maximum 
amount of information on an image. In our research, the 
ơ0 value is extracted using Calibration Tools of the 
OrfeoToolbox software, which provides us with the 
backscattering coefficient of the area. These values 

depend on the targets illuminated by the beam, on ground 
roughness and moisture and, in the end, on the vegetation 
density. 
Sentinel-2A is the second satellite of Europe’s 
Copernicus Programme, following the Sentinel-1A radar 
satellite launched last year. In partnership with the 
European Commission and within the frame of the Global 
Monitoring for Environment and Security (GMES) 
program, the European Space Agency (ESA) is 
developing the Sentinel-2 optical imaging mission, which 
is devoted to the operational monitoring of land and 
coastal areas. Sentinel-2 is the operational mission 
devoted to the observation of continental surfaces in 
decametric resolution. The Sentinel-2 mission ensures a 
systematic full land cover with 10-day repetitiveness by a 
single satellite and 5-day repetitiveness by two satellites. 
Sentinel-2 has 13 spectral bands, 3 of which are in the 
near infrared (SWIR). These images have a 290-km-wide 
field of view and 10-m, 20-m or 60-m resolution 
depending on the spectral bands. The Sen- tinel-2 mission 
is a land and coastal areas monitoring constellation of two 
satellites (Sentinel-2A, which was launched on 23 June 
2015, and Sentinel-2B, which will follow in the second 
half of 2016) that provide high-resolution optical imagery 
and continuity for the current SPOT and Landsat 
missions. The mission will provide global coverage of the 
Earth's land surface every 10 days with one satellite and 
every 5 days with 2 satellites, making the data of great 
use in ongoing studies. Sen- tinel-2 delivers high-
resolution optical images for land monitoring, emergency 
response and security services. The satellite carries a 
multispectral imager with a swath of 290 km. The imager 
provides a versatile set of 13 spectral bands spanning 
from the visible and near infrared to the shortwave 
infrared, featuring four spectral bands at 10-m, six bands 
at 20-m and three bands at 60-m spatial resolution. The 
imager’s 13 spectral bands, from the visible and the near 
infrared to the shortwave infrared at different spatial 
resolutions, take land monitoring to an unprecedented 
level. In fact, Sentinel-2 is the first optical Earth 
observation mission of its type to include three bands in 
the ‘red edge’, which provides key information on the 
state of vegetation. The 13 spectral bands span from the 
visible and the near infrared to the short-wave infrared. 
The 4 bands at 10 m are the classical blue (490 nm), 
green (560 nm), red (665 nm) and near infrared (842 nm) 
bands dedicated to land applications. The 6 bands at 20 m 
include 4 narrow bands in the vegetation red edge 
spectral domain (705 nm, 740 nm, 775 nm and 865 nm) 
and 2 large SWIR bands (1610 nm and 2190 nm) 
dedicated to snow/ice/cloud detection and to vegetation 
moisture stress assessment. The 3 bands at 60 m are 
dedicated to atmospheric correction (443 nm for aerosols 
and 940 nm for water vapor) and to cirrus detection (1380 
nm) (Baillarin et al., 2012). 

3. Cartography and Remote-sensing 
methodology 
The chosen methodology is associated with multi-data 
radar and optical image classification methodology. We 

Date Incidence 
 

Orbit 
09-10-2014 38.055 Ascending 
02-11-2014 38.786 Descending 
26-11-2014 38.653 Descending 
13-01-2015 39.215 Ascending 
26-03-2015 39.856 Ascending 
07-04-2015 38.569 Ascending 
01-05-2015 38.421 Descending 
13-05-2015 39.654 Descending 
30-06-2015 39.478 Ascending 
05-08-2015 38.665 Descending 
17-08-2015 37.789 Descending 
29-08-2015 38.669 Ascending 
10-09-2015 39.285 Descending 
22-09-2015 39.456 Ascending 
09-11-2015 38.721 Descending 
03-12-2015 38.451 Ascending 
27-12-2015 39.885 Ascending 
20-01-2016 38.411 Descending 
13-02-2016 39.662 Ascending 
01-04-2016 39.453 Ascending 
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began with the preliminary processing of the radar and 
optical images (Figures 1 and 2 show the radar data). 
 

 
Fig. 1. Data processing procedure 

A typical processing sequence applied to SAR data 
entails radiometric calibration, speckle filtering, and 
orthorectification. Radar signals require pre-processing to 
account for geometric distortions and for differences in 
illumination conditions due to topography and the surface 
being illuminated to one side of the satellite. An 
additional step is needed to remove noise caused by 
reflections from features that are not of interest. This is 
called speckle noise and is removed by a process called 
speckle filtering. The filtering applied is filtering of the 
Lee type (Figure 14). Adaptive filters use local statistics 
to filter the data and so reduce image speckle and, in 
some cases, preserve or enhance edges and other features. 
At the same time, the backscattering coefficient was 
analyzed for the two different polarizations depending on 
a set of parameters related, on the one hand, to the RSO 
characteristics (acquisition frequency, polarization and 
geometry) and, on the other hand, to the at- tributes of the 
target (geometric structure, dielectric constant, biomass, 
etc.). The backscattering coefficient is usually expressed 
in decibels (dB), yielding a normalized value comparing 
the observed power to the rated power for an equivalent 
1-m2 surface and corresponding to the distance to the 
ground. The backscattering coefficient is also very much 
influenced by factors related to the sensor configuration 
and collection geometry. 

 
Figure 2: Radar data processing procedure 

The optical image (Sentinel-2) was already orthorectified 
in the UTM 35N cartographic system by ESA (level 1C). 
The geometric correction of image data is an important 
prerequisite that must be performed prior to using images 
in geographic information systems (GIS) and other 
image-processing programs. To process the data with 
other data (radar) or maps in a GIS, all the data must be 
based on the same reference system. Using a combination 
of different sensors, we resampled the data to the smallest 
pixel size between optical and radar. All the datasets were 
orthorectified, resampled to a 10-m pixel size and 
separately classified. 
We then performed synthetic Random Forest 
classifications, first for all the Sen- tinel-1 radar data and 
then using combinations of the Sentinel-2 image. The 
super- vised classifier used is the Random Forest 
algorithm, which is available in OrfeoToolbox (version 
5.0) free software. Random Forests offers high-quality 
map- ping of different vegetation types with much faster 
computation compared to other state-of-the-art classifiers 
such as, for instance, Support Vector Machines with 
Gaussian kernels (Inglada et al., 2016). Random Forest is 
an ensemble learning technique and builds upon multiple 
decision trees. Each decision tree is built using a subset of 
the original training data and is evaluated based on the 
remaining training features. New objects are classified as 
the class that is predicted by the most trees. According to 
Rodriguez-Galiano et al., 2012, the classifier has three 
main ad- vantages for land cover classifications from 
remote-sensing images: (i) it reaches higher accuracies 
than other machine-learning classifiers; (ii) it has the 
ability to measure the importance level of the input 
images; (iii) it makes no assumptions about the 
distributions of the input images (cited by Hütt et al., 
2016). We use the following parameters for the Random 

  

Sentinel - 1  radar  
image processi ng  

and analysis   

( fig.  2 )   

Sentinel - 2   

Level LIC   

Forest Random  
Classification   

Multi - sensor data   
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Forest algorithm: 100 trees, maximum depth of the tree 
25 and minimum number of samples in each node 25. 
The final stage of image processing relates to the 
integration of several images from two satellites 
(Sentinel-1 and Sentinel-2), which have different spatial 
resolutions. Image integration is a method for combining 
information from various sources. The combined analysis 
of optical and microwave imagery uses the ad- vantages 
of both systems for vegetation classification. 

4. Field Observation and Validation of Results 
Another method is field observation and validation of 
results. Field observations are vital in remote sensing. In 
our research, the data collection stage prior to validation 
of the results of supervised classifications includes two 
categories of surveying methods, random (probabilistic) 
methods and empirical (non-random) methods. The 
survey was based on the satellite imaging document. 
Point sampling was used during this data processing 
stage. For each class, 1000 training points and 1000 
control points (not the same points) were randomly 
chosen. This survey determines whether an observation 
unit belongs to a sample by random draw. In this case, the 
probability law is known. The random draw is stratified 
starting from all the homogeneous thematic areas. The 
stratification was initially performed prior to the field 
investigation phase. This first stage stratification is a 
morphological stratification that relies on textural 
homogeneity, backscattering and thematic 
homogenization criteria. As concerns field observations, 
the ground surveys (twenty floristic surveys per thematic 
class) carried out in the restored delta areas allowed us to 
determine the vegetation typology in the surveyed area. 
Vegetation description is physiognomic and includes land 
cover rate estimation. Depending on the size of the 
homogeneous area, the size of the observation unit is 
more or less significant. The vegetation structure and type 
were measured at each point within a 100-m radius of the 
observer. Some floristic information was also gathered, 
including a list of species classified by physiognomic 
layers (trees, shrubs, and grasses). 
The results of the evaluation are summarized in a 
confusion matrix. Based on the confusion matrix, 
statistical accuracy parameters are calculated. One is the 
overall accuracy, which counts pixels that are correctly 
classified in the reference divided by all pixels that are 
taken for reference. This procedure is used for both 
optical and microwave image classification. 

5. Remote sensing and restoration areas in the 
Danube Delta 
The results of this study relate to combinations of data 
from different satellite sensors (Sentinel-1 time series, 
Sentinel-2) that are used to improve the accuracy of 
recognition and mapping of major vegetation classes in 
the restoring areas in the Danube Delta. First, the data 
from each sensor are classified and analyzed. The results 
show quite good classification performance (87.5% mean 
accuracy for Sentinel-2; 95.7% for the Sentinel-1 time 
series) in this first step. The combination of the Sentinel-

2 time series and optical data from Sentinel-2 improved 
the performance of the classification (97.1%) (Figure 4). 
The vegetation types were labeled according to 10 classes 
(figures classifications). These classifications allowed us 
to distinguish several classes of reeds in the ‘large marsh 
vegetation’ class (reed vegetation on salinized soils, pure 
reed vegetation, and reed vegetation on open plaur 
(floating vegetation called plaur (floating reed bed) is an 
association of reeds and other wetland plants that grow on 
a one- meter thick cover made up of roots, soil and 
various organic materials) and two classes of reed 
vegetation on compact plaur (one class with cut reeds). 
The classification accuracy of the Sentinel-2 image 
(Figure 15) was estimated to be 87.5%, which was 
inferior to that of the time series from the radar data 
provided by Sentinel-1. The Sentinel-1 images time series 
classifications (95.7% mean accuracy) display very good 
accuracy. 
 

 
Figure 3: Random Forest classification in 10 classes vegetation: 
Optical image Sen- tinel-2. 5 classes of reed vegetation with 
some confusion between these classes. The restored areas: a) 
Babina-Cernovca; b) Popina; c) Dranov-Holbina. 

The classification precision analysis per class proves that 
the Sentinel-2 images allow the identification of all 10 
classes of vegetation considered in this study. The 
following classes exhibit satisfactory accuracy for some 
of the restoring areas: reed vegetation on salinized soils 
(81.4%), pure reed vegetation (76.9%), reed vegetation 
on open plaur (87.3%). On the other hand, the class ‘reed 
on compact plaur’ exhibited lower performance in the 
mapping results, yielding an accuracy of 59.7%. 
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Table 3: Performance of the classification by class and all 
classes of the Sentinel-2 

By integrating the Sentinel-1 time series with optical 
images such as Sentinel-2, the quality of the habitat maps 
of the restoring areas in the Danube Delta can be 
considerably improved (Figure 4). 

 
Figure 4: Multi-sensor data integration Sentinel-1 radar time 
series and Sentinel-2 optical sensor.5 classes of reed vegetation 
and less confusion between these classes. The restored areas: a) 
Babina-Cernovca; b) Popina; c) Dranov-Holbina. 

Data integration between the Sentinel-1 and Sentinel-2 
images provides classification with an overall accuracy of 
97.1% and very good class accuracies ranging from 
90.3% to 95.8%. The classes ‘reed vegetation on 
salinized soils’ (97.1%), ‘pure reed vegetation’ (91.1%), 
‘reed on open plaur’ (97.9%), and ‘reed on compact 
plaur’ (cut reed) (99.9%) were well mapped and show 
good accuracy (table 4 and Figure 5). 

Class Sentinel-1 
Per cent 
accuracy 

Radar+optical 
Per cent accu- 

racy 
1 99.5 99.8 
2 95.1 98.3 
3 96.4 98.1 
4 94.5 99.6 
5 96.8 99.5 
6 96.8 97.1 
7 92.1 91.1 
8 96.7 97.9 
9 91.5 90.3 
10 99.4 99.9 
Mean 95.87 97.151 

 
Table 4: Performance of the classification by class and all 
classes of multi-sensors and time series of Sentinel-1 

 
Figure 5: Performance for the multi-sensor and time series 
classification by class (per cent accuracy) (S1=radar sensor time 
series Sentinel-1, S2=optical sensor Sen- tinel-2 and 
S1+S2=multi-sensor data integration) 

The mapping accuracies were summarized using 
confusion matrices and statistics including user, producer 
and overall accuracy and Cohen’s K (Figure 6). 
Classification accuracy was assessed using global and 
Kappa indices. Very good Kappa indices were obtained; 
for the optical data, the Kappa index was 0.86, and for the 
multi-sensor data integration, the Kappa index was 0.96. 
The classification accuracy was estimated using cross-
validation and by calculating the percentage of correctly 
classified pixels on the resulting maps. These present the 
reference class labels in rows and the labels predicted by 
the classifier in columns. The results are expressed in 
percentages with respect to the reference labels, and 
therefore, values in the diagonal represent Producers 
Accuracy. 

Class Sentinel-2 
Per cent 
accuracy 

1 100.0 
2 91.5 
3 90.0 
4 98.4 
5 94.4 
6 81.4 
7 76.9 
8 87.3 
9 59.7 
10 96.4 
Mean 87.576 
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Figure 6: Confusion Matrix of Random Forest classifications: a) 
Sentinel-1 time series; b) optical data Sentinel-2; c) Multi-
sensor data integration. Very good Producers Accuracy values 
for the confusion matrix of Sentinel-1 radar: most classes show 
values ranging from 90.01% to 99.72%. The confusion matrix 
of optical data with many confusions of reed class. The 
confusion matrix of the multi-sensor data integration: the 
Producers Accuracy rates were higher than 90%, i.e. ranging 
from 90.4 to 99.91%. 

 
Figure 6 shows the confusion matrix for the optical data. 
The matrix reveals many confusions of reed classes 
involving different forms (reed on salinized soils, pure 
reed, reed on compact plaur). The most important 
confusions concern the various reed classes that 
characterize the habitats in the restored areas. ‘Reed on 
com- pact plaur’ has a Producers Accuracy of 55.1%, 
with confusions with the ‘pure reed vegetation’ class 
(16.26%) and the ‘reed vegetation on salinized soils’ 
class (10.42%). Other confusions concern the ‘pure reed 
vegetation’ class, which displays a Producers Accuracy 
of 78.65%. The most important confusion in this class, 
21.50%, is represented by the ‘reed on compact plaur’ 
class. Thu, even when optical data are used, the 
distinction between the plant formations of these 
wetlands is not always easy. Prior research has revealed 
that when optical imaging is used there is spectral 
confusion between wet and dry environments and also 
between various types of wetlands. Marsh and swamp 
identification in the spring usually causes fewer problems 
than identification of wetlands with drier water regimes, 
such as peat bogs or swamps with considerable foliar 
biomass (Ozesmi and Bauer, 2002). 
The confusion matrix of the classification resulting from 
the Sentinel-1 time series processing reveals very good 
Producers Accuracy values; most classes show values 
ranging from 90.01% to 99.72%. The most substantial 
confusions concern the ‘pure reed vegetation class’, with 
a Producers Accuracy of 90.01%. This class is mixed 
with the ‘reed on compact plaur’ class (4.21%) and with 
the ‘reed vegetation on salinized soils’ class (1.26%). 
Radar data provide information especially on plant 
physiognomies. This analysis supplies information on 
polarimetric data in relation to the geometric 
characteristics of the physiognomies of the plants 

growing in the restored areas of the delta and enables us 
to draw conclusions about ways to distinguish among the 
various plant physiognomies. 
Finally, the confusion matrix of the multi-sensor data 
integration revealed excel- lent classification results when 
the Producers Accuracy rates were higher than 90%, i.e., 
between 90.4 and 99.91%. The low confusion values 
shown by this matrix concern the two classes for which 
we also read confusions. 

6. Temporal Intensity Radar Data Signature 
Our analysis will primarily address the different reed 
classes (Figures 7 and 8). 

 
Figure 7: Temporal Intensity Radar Data Signature. Polarization 
VV 

 
Figure 8: Temporal Intensity Radar Data Signature. Polarization 
VH 

On average, the temporal variation is similar whatever the 
polarization, VV or VH; from 2014 November to 2015 
January, the radiometry is not really changing because at 
this period the landscape is not changing very much. In 
March in early spring, the different reed sites are 
characterized by surface backscattering with poor 
symmetric backscattering values. This surface 
backscattering is supported by the low intensity values of 
the VV polarization channel. The polarization channel 
values increase between late April and early June, 
indicating a transition from surface backscattering to 
dipolar backscattering. Between early June and late 
September, this dominant dipolar backscattering becomes 
almost representative of the total backscattering. In April 
and May, the backscattering values of different reed sites 
increase significantly due to the combined action of 
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mature biomass and denser and taller vegetation. The 
decrease in the water level from ≈2 m to ≈1 m between 
July and August-September also accounts for this 
backscattering decrease. Signal saturation in band C and 
the difficult substrate access, due to water drainage at 
most of the sites, led to a decrease in all the intensity 
parameters. The main backscattering source thus shifts 
towards the upper part of the canopy, where the large, 
raised reed leaves enhance rather than reduce signal 
backscattering. An important observation concerns the 
temporal evolution of backscattering. We noted that the 
backscattering peak is reached when consistent 
backscattering mechanisms are in place (in May/June), 
correlating with the increased aerial biomass. 
The foregoing observations show that there is a transition 
from surface backscattering in early spring, during which 
the first plant growth phase occurs (May-June), to dipolar 
or double-bounce non-dominant backscattering. This 
mechanism continues to be dominant during the second 
phase (July-August) up to plant maturity; it then turns 
into volume backscattering during the senescence phase. 
On VH polarization, the species of the various reed 
classes make up a very homogeneous group, and there are 
few differences between the various seasonal sig- natures. 
For these classes, the backscattered power peak is 
reached in May and June, when consistent backscattering 
mechanisms are in place and the aerial biomass reaches 
its peak height. 

7. Conclusion 
According to research conducted by the United Nations 
Environment Programme, 40% of the global economy 
depends on the proper functioning of ecosystems. In most 
cases, the ecosystem that needs restoring has been 
degraded, dam- aged, transformed or completely 
destroyed as a direct or indirect result of human actions. 
Ecological restoration should become a priority so as to 
limit the process of degradation of the environment, to 
contribute to the preservation of fragile habitats and of 
critically endangered species and to ensure the 
valorization of natural resources. Over time, human 
intervention has manifested itself in more than a quarter 
of the entire surface of the Danube. This intervention was 
brutal and has rendered ecosystem restoration very 
difficult. Over time, the development of fluvial-maritime 
navigation and of resource use policies applying to the 
Danube Delta (fish, agricultural, forestry, and other 
resources) has determined the main water system and 
landscape transformations in the Danube Delta. 
After the fall of the communist regime, ecologic 
restoration actions were con- ducted in the delta. This 
ecologic reconstruction policy concerns all the dammed 
areas (27.6% of the current surface area of the delta) that 
had been previously developed for agriculture, fish 
farming and reed processing. Considering that the 
Danube Delta includes 30 types of ecosystems that are 
highly dependent on river level oscillation, the main 
objective of this ecological recovery is to restore the 
natural hydrological circuit of the economically 
developed areas. A solution to these efforts of 

reconnection to the hydrological regime of the delta was 
suggested in 1994; it consisted of digging holes in the 
dykes to allow the water to enter and flow freely in these 
dammed areas. For the observation and analysis of the 
restored ecosystems in these areas, we relied on state-of-
the-art Sentinel-1 and Sentinel-2 radar and optical 
satellite imaging and remote sensing methodology. 
Remote sensing offers ac- curate automated methods for 
detecting change in restored wetlands. Vegetation change 
detection is a powerful indicator of restoration success. 
The restoration pro- jects use vegetative cover as an 
important indicator of restoration success. Our re- search, 
which relies on several series of radar images captured 
especially during the growth period, enables us to 
improve plant formation recognition by exploiting the 
temporal dynamics of the various plant classes of the 
restored areas of the delta. Temporal analyses revealed 
that no single date allows satisfactory characterization of 
all the vegetation classes. Thus, the temporal dimension, 
which is represented by seasonal evolution, is an essential 
component if we intend to draw up a detailed inventory 
of the restored vegetation classes in the delta. 
The synergy of a time series of radar satellite 
observations with the optical data and radar data can be 
exploited to improve monitoring and analyze the 
vegetation in the restoration areas of the Danube Delta. 
Information from different sensors may assist in the 
variable retrieval by limiting potential ambiguities. The 
temporal resolution of the optical sensor Sentinel-2 does 
not provide temporally frequent products of vegetation 
characteristics due to the cloud coverage. Application of a 
multi-temporal radar, multi-sensor approach to a temporal 
sequence of data acquired by different sensors can 
improve mapping and monitoring of vegetation state 
variables over time. By integrating the Sentinel-1 time 
series with optical images such as those obtained by 
Sentinel-2, the quality of the habitat maps of the restoring 
areas in the Danube Delta can be improved considerably 
(97.1%). Very good Kappa in- dices were obtained; for 
the time series radar, the Kappa index was 0.96, and for 
multi-sensor data integration the Kappa index was 0.97. 
The reliable Producers Ac- curacy and K coefficient 
results prove the complementarity of the two satellites for 
the observation, analysis and spatial representation of the 
deltaic plant ecosystems. The Producers Accuracy 
analysis by class shows that the Sentinel-2 sensor has its 
limits concerning the detection of similar plant classes, 
such as, for example, the different classes of reed. 
Although this sensor detects these classes, the mapping 
precision is not always high (on some occasions, it is 
approximately 55% for the ‘reed on compact plaur’ 
class). In contrast, the use of a Sentinel-1 time series 
reveals an interesting C band radar time signature in the 
Danube Delta ecosystem. Moreover, the combination 
with Sentinel-2 data resulted in considerable reduction of 
the observed confusions for both Sentinel-1 and Sentinel-
2 with, for instance, a Producers Accuracy value of the 
‘reed on compact plaur’ class of 90.46%, as well as in- 
creased accuracy for other reed classes. 
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As revealed by the data collected by the satellites used in 
our research, the plant cover of the restored areas appears 
to be normal and to consist of plant formations similar to 
those found in the natural areas of the delta. Therefore, 
we could conclude that plant ecosystem restoration in the 
Danube Delta has been successful. 

8. References  
Apan, A. A., S. R. Raine, and M. S. Paterson, 2002. 

Mapping and analysis of changes in the riparian 
landscape structure of the Lockyer Valley catch- ment, 
Queensland, Australia. Landscape and Urban Planning 
59, 43–57. 

Baillarin, S.J., Meygret, A., Dechoz, C., Petrucci, B., 
Lacherade, S., Tremas, T., Isola, C., Martimort, P., 
Spoto, F., 2012. Sentinel-2 level 1 products and image 
processing performances, in: 2012 IEEE International 
Geoscience and Remote Sensing Symposium, 7003–
7006. 

Bourgeau-Chavez, L.L.; Smith, K.B.; Brunzell, S.M.; 
Kasischke, E.S.; Romanowicz, E.A., and Richardson, 
C.J., 2005. Remote monitoring of re- gional inundation 
patterns and hydroperiod in the Greater Everglades 

Guo, Q., and N. P. Psuty, 1997, Flood-tide deltaic 
wetlands: detection of their sequential spatial evolution. 
Photogrammetric Engineering and Remote Sensing 63, 
273–280. 

Heinl, M., A. Neuenschwander, J. Sliva, and C. 
Vanderpost, 2006. Interactions be- tween fire and 
flooding in a southern Africa floodplain system (Oka- 
vango Delta, Botswana). Landscape Ecology 21, 699–
709. 

Hütt, C., Koppe, W., Miao, Y., Bareth, G., 2016. Best 
Accuracy Land Use/Land Cover (LULC) Classification 
to Derive Crop Types Using Multitem- poral, 
Multisensor, and Multi-Polarization SAR Satellite 
Images. Re- mote Sensing 8. 

Inglada, J., Vincent, A., Arias, M., Marais-Sicre, C., 
2016. Improved Early Crop Type Identification By Joint 
Use of High Temporal Resolution SAR And Optical 
Image Time Series. Remote Sensing 8, 362. 

Jensen, J. R., 2000. Remote sensing of the environment: 
an earth resource perspective, 2nd edition. Prentice Hall, 
Upper Saddle River, New Jersey. 

Jensen, J. R., K. Rutchey, M. S. Koch, and S. 
Narumalani, 1995. Inland wetland change detection in 
the Everglades Water Conservation. 

Klemas V., 2013, Using Remote Sensing to Select and 
Monitor Wetland Restoration Sites: An Overview. 
Journal of Coastal Research: Volume 29, Issue 4, 958 – 
970. 

Lang, M.W. and McCarty, G.W., 2008. Remote sensing 
data for regional wetland mapping in the United States: 
trends and future prospects. In: Russo, R.E. (ed.), 
Wetlands: Ecology, Conservation and Restoration. 
Hauppauge, New York: Nova, 1–40. 

Michener, W. K., and P. F. Houhoulis, 1997. Detection of 
vegetation changes associated with extensive flooding 
in a forested ecosystem. Photogrammetric Engineering 
and Remote Sensing 63, 1363–1374. 

  
 
Niculescu S., Lardeux C., Hanganu J., Mercier G., David 

L., Change Detection of Floodable in Danube delta by 
Radar Images, 2015, Natural Hazards, Vol- ume 78, 
Issue 3, 1899-1916. 

Niculescu S., Pécaud D., Michèle-Guillou E., Soare P., L. 
David, 2015, Quel développement durable pour le delta 
du Danube ? Enquête à Pardina, Ver- tigO, Vol 15, n°1, 
2-26. 

Niculescu, S., Lardeux, C., Grigoras, I., Hanganu, J., 
David, L., 2016. Synergy Be- tween LiDAR, 
RADARSAT-2, and Spot-5 Images for the Detection 
and Mapping of Wetland Vegetation in the Danube 
Delta. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 9, 3651–3666. 

Novo, E.M.L.M.; Costa, M.P.F.; Mantovani, J.E. and 
Lima, I.B.T., 2002. Relation- ship between macrophyte 
stand variables and radar backscatter at L and C band, 
Tucurui reservoir, Brasil. International Journal of 
Remote Sens- ing, 23, 1241–1260. 

Ozesmi, S.L. and Bauer, M.E., 2002. Satellite remote 
sensing of wetlands. Wetland Ecology and 
Management, 10, 381–402. 

Papa, F., Prigent C., Durand F., and Rossow W. B., 2006. 
Wetland dynamics using a suite of satellite 
observations: a case study of application and evaluation 
for the Indian Subcontinent. Geophysical Research 
Letters 33:4. 

Phinn, S. R., D. A. Stow, and D. V. Mouwerik, 1999. 
Remotely sensed estimates of vegetation structural 
characteristics in restored wetlands, Southern 
California. Photogrammetric Engineering and Remote 
Sensing 65, 485–493. 

Ramsey, E. W. III, G. A. Nelson, and S. K. Sapkota, 
1998. Classifying coastal re- sources by integrating 
optical and radar imagery and color infrared pho- 
tography. Mangroves and Salt Marshes 2, 109–119. 

Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-
Olmo, M.; Rigol-Sanchez, J.P., 2012, An assessment of 
the effectiveness of a random forest classifier for land-
cover classification, ISPRS J. Photogramm. Remote 
Sens., 67, 93–104. 

Rosso, P. H., S. L. Ustin, and A. Hastings. 2005, Use of 
lidar to study changes associated with Spartina invasion 
in San Francisco Bay marshes. Remote Sensing of 
Environment 100, 295–306. 

Shuman, C. S., and R. F. Ambrose, 2003, A comparison 
oremote sensing and ground-based methods for 
monitoring wetland restoration success. Restoration 
Ecology 11, 325–333. 

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on 
submitted abstracts | https://doi.org/10.5194/ica-proc-1-82-2017 | © Authors 2017. CC BY 4.0 License.



   10 of 10 

 

Simenstad, C., D. Reed, and M. Ford, 2006, When is 
restoration not? Incorporating landscape-scale processes 
to restore self-sustaining ecosystems in coastal wetland 
restoration, Ecological Engineering 26, 27–39. 

Tuxen, K.A., Schile, L.M., Kelly, M., Siegel, S.W., 2008. 
Vegetation Colonization in a Restoring Tidal Marsh: A 
Remote Sensing Approach. Restoration Ecology 16, 
313–323. 

Zedler, J.B., Kercher, S., 2005, Wetland resources: status, 
trends, ecosystem services, and restorability. Annu. 
Rev. Environ. Resour. 30, 39–74 

Proceedings of the International Cartographic Association, 1, 2017. This contribution underwent single-blind peer review based on 
submitted abstracts | https://doi.org/10.5194/ica-proc-1-82-2017 | © Authors 2017. CC BY 4.0 License.


	Synergy between Sentinel-1 radar time series and Sentinel-2 optical for the mapping of restored areas in Danube delta
	1. Remote sensing and restoring wetland habitats
	2. Dataset
	3. Cartography and Remote-sensing methodology
	4. Field Observation and Validation of Results
	5. Remote sensing and restoration areas in the Danube Delta
	6. Temporal Intensity Radar Data Signature
	7. Conclusion
	8. References



