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Abstract: In this paper, we present a novel approach for demolished building detection using bi-temporal aerial images 

and building boundary polygon data. The building boundary polygon data can enable the proposed method to 

distinguish buildings from non-buildings. Moreover, it can enable the exclusion of non-building changes such as those 

caused by changes in tree cover, roads, and vegetation. The results of demolished building detection can be achieved by 

using the building-base. The proposed method classifies each building as demolished or undemolished. The 

architectures, which based on U-Net and VGG19, are implemented for realizing automatic demolished building 

detection. The result suggested that U-Net is a useful architecture for image classification problems as well as for 

semantic segmentation tasks. In order to verify the effectiveness of proposed method, the detection performance is 

evaluated using images of an entire city. The results suggest that the proposed method can accurately detect demolished 

buildings with a low mis-detection rate and low over-detection rate. 
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1. Introduction 

Over the last decade, with advances in computer vision 

techniques, building change detection has emerged as an 

active research area in the domain of photogrammetry 

and remote sensing. This increase in interest may be 

attributed to the wide range of applications of building 

change detection, including such map updating and 

disaster evaluation. 

Traditionally, change detection of buildings was 

performed manually by comparing aerial images from 

different time periods. Owing to the tedious and time-

consuming nature of this task, over the past decade, 

researchers have developed automatic detection 

techniques. However, accurate change detection of 

buildings still remains a challenging task because of the 

different characteristics of the two images that arise due 

to differences in camera, atmosphere, or shadows. 

Previous studies on building change detection have 

mainly focused on the spectral information and color 

variations in bi-temporal images (Bourdis et al., 2011). 

However, these methods yield too many errors, including 

mis-detection (i.e., a demolished building going 

undetected), over-detection (i.e., an undemolished 

building being detected as demolished, or a lot of changes 

in non-building area.), especially over-detection.  

The development of digital surface models (DSMs) have 

proved to be effective in improving accuracy of building 

extraction and change detection (Rottensteiner et al., 

2007; Tian et al., 2014). The variations in height 

represent a robust feature that enable the evaluation of 

building changes. However, DSMs cannot distinguish 

buildings changes from non-buildings changes such as 

those caused by trees and vegetation between two time 

periods. Moreover, it is difficult to determine the height 

of a building, if the building is partially obstructed by tree 

cover. 

Recently, researchers have made efforts to apply machine 

learning techniques for change detection of buildings. In 

particular, convolution neural networks, which have been 

proven effective for identifying objects with their 

appearance variations, have attracted interest in buildings 

change detection as well as computer vision techniques 

(Daudt et al., 2018; Lim et al.,2018; Maltezos et al., 

2018; Pang et al., 2018).  

Given the fact that there are no reliable and stable 

approaches for realizing automated building change 

detection, additional research efforts are required to 

address the following challenges that exist in automated 

building change detection. 

(1) Dense urban areas 

Accurate detection of small sized buildings that area 

closely situated is challenging, particularly in dense urban 

areas. 

(2) High noise 

With increasing urbanization, there is significant noise 

due to the detection of non-building changes, such as cars, 

change in vegetation, and presence of temporary man-

made structures.  

(3) Object-base (building-base) detection.  

Most detection methods are based on pixel level change. 

In these methods, changes in pixels is the base for 

detection. For example, in dense urban areas, if a building 
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and three neighboring buildings are demolished, these 

methods will detect changes over a large area, instead 

detecting four buildings as being demolished. Similarly, 

if a building and surrounding area undergoes changes 

over time, these methods can only detect change in the 

area but cannot differentiate building change from non-

building changes. In summary, these pixel-based change 

detection methods cannot differentiate the boundary of 

buildings. 

(4) City-level detection 

Building change detection when applied to the landscape 

of an entire city is challenging given the large area 

comprising of tens of thousands of buildings, and 

presence of complex structures. Similar to building 

change detection, demolished building change detection 

is also an important application that should be automated.  

In Japan, people who own buildings on January 1 are 

required to pay property tax of that year. Each year, the 

municipal government undertakes a survey of building 

change, such as newly-constructed or demolished 

buildings. Therefore, to prevent taxation on demolished 

buildings, there is a need to identify buildings that have 

been demolished. 

Most municipal governments update building boundary 

polygon data (referred to as building polygon data) for 

urban planning on a yearly basis. However, before 

updating building polygon data, it is necessary to acquire 

information about demolished buildings. Therefore, 

building polygon data from the previous year can be 

utilized to improve the accuracy of demolished building 

detection at relatively low cost. It should be noted that 

methods for change detection of demolished buildings 

also experience the same difficulties as mentioned earlier. 

Therefore, in this paper, we present a novel approach for 

demolished building detection that uses bi-temporal aerial 

images and building polygon data. Demolished building 

detection based on building-base can be realized using 

building polygon data. Building polygon data not only 

makes it feasible to distinguish buildings from non-

buildings, it also can be used to exclude non-building 

changes such as those caused by trees and vegetation.  In 

this work, we used the U-Net and VGG19 networks. U-

Net is regarded as a remarkable and one of the most 

successful and popular architectures for semantic 

segmentation (Ronneberger et al., 2015).  In our proposed 

method, U-Net was used for the image classification task. 

On the other hand, VGG19 is a well-known architecture 

for image classification problems (Simonyan et al., 2015). 

Each building was classified into two classes—

demolished or undemolished. The demolished building 

detection algorithm is based on building-base. The 

proposed method was tested on the entire area of a city to 

verify its performance. 

 

 

 

                               
 

 

                  
Figure 2. An overview of the proposed demolished building detection method 

 

U-Net VGG19 
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2. Related works 

Figure 1 shows the histogram of the building area in a 

sample city. Buildings with area larger than 1280 m2 only 

account for a small proportion of the total number of 

buildings. Buildings smaller with less than 5 m2 area are 

mostly warehouses that are exempted from taxation. 

Therefore, this work only considers buildings between 5 

m2 and 1280 m2 in terms of surface area. 

 

 
Figure 1. Histogram of building area of a sample city 

 

An overview of the proposed demolished building 

detection method is illustrated in Figure 2. First, the bi-

temporal aerial images are resampled into the same 

spatial resolution. Second, the average and standard 

deviation of the RGB values are obtained from the aerial 

image of each city for a given period. Third, the bi-

temporal aerial images and building images are clipped 

with batch size. The training dataset is input to the 

network to train the detection model, and the test dataset 

is used for obtaining the model’s prediction results. 

Finally, the model is applied to classify each building into 

two classes— demolished or undemolished. 

2.1 Resampling 

Bi-temporal aerial images that are acquired using 

different spatial resolutions are converted into the same 

spatial resolution. 

2.2 Statistics 

Figure 3 shows the histogram for Red (red line), Green 

(green line), and Blue (blue line) values of the bi-

temporal images. The upper figure illustrates the RGB 

histogram of bi-temporal images of city AA acquired in 

2017 (left) and 2018 (right), respectively. The bottom 

figure shows the RGB histogram of bi-temporal images 

of city BB that were acquired in 2017 (left) and 2018 

(right), respectively. We observed significant differences 

in color variations in the bi-temporal aerial images, which 

may be attributed to the difference in cameras, 

atmosphere, and shadows. RGB histograms exhibit 

differences in the bi-temporal images of the same city; 

however, the difference is much smaller than that in 

observed between the bi-temporal images of two different 

cities.  

To eliminate the potential disturbances on the 

classification results due to these factors, the average and 

standard deviation from RGB values of each city in a 

given period were calculated. These values are used for 

color correction subsequently (section 2.3). 

 

     
Figure 3. RGB histogram of bi-temporal aerial images 

 

2.3 Clipping 

To eliminate noise from adjacent buildings, the minimum 

bounding square for enclosing a building is regarded as a 

better choice for batch size. Figure 4 illustrates the 

process for obtaining the minimum bounding square 

using a building’s polygon data (blue line). First, the 

minimum circle (yellow line) enclosing the building 

polygon is created; then, the minimum bounding square 

that encloses the circle (green line) is obtained. 

 

 
Figure 4. The minimum bounding square of a building 

 

However, feeding the dataset to a network with tens of 

thousands of different batch sizes is unrealistic and time-

consuming. Therefore, based on building attributes 

(individual house, mansion, factory, warehouse, etc.), 

buildings were divided into four areal ranges 5–20 m2, 

20–80 m2, 80–320 m2, and 320–1280 m2. To obtain the 

optimal batch size for each areal range, the histogram of 

the minimum side length of the bounding square for each 

area range were plotted, as shown in Figure 5; the side of 

the square is measured in pixels. The red dashed lines in 

Figure 5 indicate the batch size used in this study. It 

should be noted that we did not utilize the maximal 
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square side length in each areal range, because it is too 

big for most of the buildings in that areal range. However, 

very narrow buildings will be partially excluded from the 

batch. 

 

 
Figure 5. Histogram of square side length 

 

Using the four steps shown in Figure 2, the dataset 

(training or test) for each building polygon was obtained. 

The procedure is described as follows:  

(1) create a square per batch size. There are four batch 

sizes: 48x48, 96x96, 192x192, and 384x384 that bound 

the building area based on ranges listed in Table 1. 

(2) clip the old image and the new image using the above 

square. 

(3) correct the color of the old and new images by using 

the average and standard deviation of the RGB values. 

(4) transform the building polygon data to a black and 

white image. The area inside the building boundary is 

white, while all the adjacent buildings, surrounding 

region, and non-building area is blacked out. In other 

words, excluding the building boundary area, all other 

objects/areas are masked. 

In this work, the geospatial data abstraction library 

(GDAL) was used to generate the dataset (training or test). 

GDAL is a free and open source software for reading and 

writing raster and vector geospatial data formats. It can 

be installed and run in Ubuntu operating system. 

Therefore, the processes in this work can be processed in 

the Ubuntu 16.04 LTS. 

 

Building area range(m2) Batch size(pixels) 

5–20 48x48 

20–80 96x96 

80–320 192x192 

320–1280 384x384 

Table 1. Batch size different building area ranges 

 

2.4 Training phase 

We assigned a ground truth value for each training 

dataset created. For U-Net, when a building is 

demolished, a white image is labelled as the ground truth; 

Conversely, a black image is labelled as the ground truth. 

In the VGG19 dataset, the ground truth is 1 if the 

building was demolished, and 0 otherwise. 

Both the U-Net and VGG19 datasets were trained for four 

batch sizes (48x48, 96x96, 192x192 and 384x384 pixels). 

We trained each size for 100 epochs. The model of the 

100th epoch model was used. The model was output into 

a hdf5 file. 

2.5 Prediction phase 

For each test dataset, the output of the U-Net network is a 

white and black image, as illustrated in Figure 6. A 

higher proportion of white pixels indicates the possibility 

of the building in the center of image being demolished. 

While the output value of the VGG19 network lies 

between 0 and 1, a higher value indicates that a building 

has a higher probability of being demolished. 

 

 
Figure 6. Sample outputs obtained using U-Net 

 

2.6 Post-processing 

Finally, the threshold of the output of U-Net is obtained 

as a value between 0 and 1. In this study, each building 

was classified as either a demolished building or an 

undemolished building. 

3. Cross-validation 

Cross-validation is a statistical technique that is used to 

estimate the performance of a model. Several cross-

validation techniques such as, k fold cross-validation, 

leave one out cross-validation, stratified cross-validation, 

and time series cross-validation are commonly used. In 

this study, we used the k fold cross-validation, which 

divides the dataset into k groups. One group is kept for 

testing, and the model is trained on the other k-1 groups. 

Then, the process is repeated k times. 
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3.1 Sample dataset 

Nine urban cities from eight prefectures in Japan were 

used for the cross-validation. The eight prefectures are 

located in northeast Japan, eastern Japan, and western 

Japan. For each city, a sample dataset was selected, as 

shown in Table 2.  

 

No. City Sample dataset 

 Demolished  Undemolished 

1 A 27 364 

2 B 1258 653 

3 C 719 395 

4 D 56 516 

5 E 58 1007 

6 F 1016 2530 

7 G 257 1168 

8 H 937 5287 

9 I 90 1837 

Total 4418 13757 

Table 2. Sample dataset for cross-validation 

 

It is preferred to split the dataset sample into k groups of 

equal sizes. The number of demolished buildings in 

sample cities B, F, and H are greater than those in others 

cities. Therefore, we split the data into three groups (k = 

3), as illustrated in Table 3. 

 

Group City  Sample dataset 

 Demolished  Undemolished 

1 A, B, I 1375 2854 

2 C, H 1656 5682 

3 D, E, F, G 1387 5221 

Table 3. Three groups for cross-validation 

 

The networks were trained and evaluated using the test 

dataset. Figure 7 shows the image of cross-validation. 

a) Trained on group 1 and group 2; Tested on group 3 

b) Trained on group 2 and group 3; Tested on group 1 

c) Trained on group 1 and group 3; Tested on group 2 

The training dataset is randomly divided into actual 

training dataset (95%) and validation dataset (5%). 

 

 
Figure 7. The image of cross-validation 

3.2 Metrics 

As this paper, we are interested in both mis-detection as 

well as over-detection of demolished building. The 

performance of the model is evaluated in terms of both 

mis-detection and over-detection. We evaluated the 

performance using accuracy, recall, precision, and F-

score at the building-base, which is given by the 

following equations. 

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 

Here, TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative 

 

The confusion matrix is defined as shown in Table 4.  

In this work, we define accuracy as the ratio of buildings 

correctly classified relative to the total number of 

buildings detected.  

The recall rate determines the ratio of correctly predicted 

buildings relative to all demolished buildings. A low 

recall value indicates a high mis-detection rate. 

Precision is defined as the ratio of the number of actually 

demolished buildings to the number of buildings being 

classified as demolished; a lower precision indicates 

higher over-detection rate.  

F-score is the overall measure of accuracy that combines 

precision and recall. In other words, a good F-score 

indicates both low mis-detection and low over-detection 

rates. The ideal value for accuracy, precision, recall, and 

F-score is 1 (100% success), while the worst case is 0 

(complete failure). 

 

  Actual 

 Demolished Undemolished 

Predicted  Demolished TP FP 

Undemolished FN TN 

Table 4. The confusion matrix 
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 Building  

area range 

 (m2) 

Training 

dataset 

Test 

dataset 

Accuracy  Recall Precision F-score 

 D* Un* D* Un* VGG19 U-Net VGG19 U-Net VGG19 U-Net VGG19 U-Net 

k = 1 5–20 999 1981 318 1636 0.904 0.944 0.918 0.745 0.644 0.897 0.910 0.942 

 20–80 1157 1951 527 434 0.955 0.955 0.935 0.937 0.982 0.980 0.955 0.955 

 80–320 814 4310 491 2391 0.982 0.965 0.936 0.810 0.960 0.982 0.982 0.963 

 320–1280  61 294 51 760 0.321 0.944 0.764 0.215 0.067 0.68 0.426 0.930 

k = 2 5–20 851 2492 466 1125 0.899 0.908 0.841 0.806 0.820 0.870 0.899 0.907 

20–80 1221 1536 463 849 0.968 0.968 0.978 0.967 0.935 0.945 0.968 0.968 

80–320 884 5889 421 812 0.964 0.957 0.980 0.942 0.919 0.934 0.964 0.957 

320–1280 87 986 25 68 0.913 0.946 0.880 0.840 0.814 0.954 0.914 0.945 

k = 3 5–20 784 2761 533 856 0.901 0.897 0.881 0.842 0.863 0.883 0.901 0.896 

20–80 990 1283 694 1102 0.940 0.939 0.963 0.972 0.890 0.883 0.940 0.940 

80–320 912 3203 393 3498 0.985 0.985 0.964 0.936 0.895 0.922 0.985 0.985 

320–1280 76 828 36 226 0.919 0.652 0.833 0.861 0.66 0.264 0.923 0.706 

Table 5. The results of cross-validation (D* = Demolished, Un* = Undemolished) 

 

 

 

3.3 Discussion 

The performance of U-Net was evaluated by comparison 

with the results of VGG19, as shown in Table 5. The 

value of all metrics is calculated in terms of building-base. 

In Table 5, a cell is highlighted in yellow if the prediction 

rate of U-Net is better than VGG19; similarly, if the rate 

of U-Net is equal to that of VGG19, the cell is 

highlighted in gray. The description of the results is as 

follows: 

(1) U-Net and VGG19 both have high F-scores (almost 

greater than 90%). This implies that both networks show 

high accuracy in the demolished building detection task.  

(2) U-Net yields a better precision rate, while VGG19 

yields a better recall rate. 

(3) The F-score for U-Net is higher than that for VGG19; 

in other words, U-Net exhibits lower mis-detection and 

over-detection rates for demolished building. 

(4) VGG19 yields a low F-score (0.426, text in red) for   

k = 1, and for area ranges between 320-1280 m2. This can 

be attributed to the small size of the sample dataset. In 

summary, the proposed method can detect demolished 

buildings with an optimal mis-detection and over-

detection rate. Moreover, U-Net shows good performance 

despite the small size of the training data. 

4. City-level Experiments 

To verify the effectiveness of demolished building 

change detection method at the city level, we used city F 

with area greater than 50 km2, including 60699 buildings 

with areas ranging between 5–1280 m2 as test.  As shown 

in Table 6, three experiments were performed using the 

same test dataset. Each experiment was implemented 

using U-Net and VGG19. 

 

 

Building area range (m2) Test dataset 

5–20 8871 

20–80 24955 

80–320 24857 

320–1280 2016 

Total 60699 

Table 6. Test dataset for city-level experiments 

 

4.1 Experiment 1 

The training datasets were acquired from three cities, 

with over 250,000 buildings. Because of the skewness in 

the number of demolished buildings vis-a-vis 

undemolished buildings, we augmented the number of 

demolished buildings by randomly rotating demolished 

buildings. Then, we selected the same number of random 

undemolished buildings. The training dataset is described 

in Table 7. 

 

Building area range (m2) Training dataset 

Demolished  Undemolished 

5–20 3888 3888 

20–80 12060 12060 

80–320 5058 5058 

320–1280 378 378 

Table 7. Training dataset for experiment 1 
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4.2 Experiment 2 

The model developed in experiment 1 was retrained by 

using the training dataset shown in Table 8. The training 

dataset was obtained from the same city of test dataset; 

however, the aerial images were captured during a 

different time period. 

 

Building area range (m2) Training dataset 

Demolished  Undemolished 

5–20 150 323 

20–80 196 753 

80–320 137 433 

320–1280 2 0 

Table 8. Training dataset for retraining the model 

4.3 Experiment 3 

The model developed in experiment 2 was retrained by 

using the training dataset in Table 2; however, city F was 

excluded. 

4.4 Results 

The test dataset contains a total of 60699 buildings, 

which includes 1009 demolished buildings and 59690 

undemolished buildings. Table 9 shows the rate of mis-

detection and over-detection for each experiment. The 

performance of each model was measured using the same 

threshold. In experiment 1, the over-detection ratio is 

very high. However, the results suggest that retraining is 

very effective in experiment 2, as the over-detection ratio 

is reduced significantly. Moreover, the over-detection 

ratio was also decreased effectively in experiment 3. 

Experiment Model Mis-detection 

FN/(TP+FN) 

Over-detection 

FP/(FP+TN) 

1 
VGG19 2.55% 24.02% 

U-Net 0.55% 57.25% 

2 
VGG19 3.37% 13.54% 

U-Net 2.09% 9.8% 

3 
VGG19 3.82% 8.33% 

U-Net 2.64% 4.56% 

Table 9. Results of the three experiments 

 

Because of skewness in the number demolished buildings 

(1009) relative to the undemolished building (59690) in 

the test dataset, we used the receiver operating 

characteristics (ROC) curve and the area under the curve 

(AUC) to evaluate the results. The ROC curve is obtained 

by plotting the false positive rates on the x-axis and the 

true positive rates on the y-axis for different threshold 

values. AUC is defined as the area under the ROC curve. 

A higher AUC indicates better performance.  

Figure 8 shows the ROC curve and AUC of U-Net and 

VGG19. It can be seen that U-Net yields higher AUC 

than VGG19 in all three experiments. This result 

indicates that using the same training dataset, U-Net has 

higher correction rate than VGG19. In addition, more 

representative training samples can optimize the accuracy 

of the model for both U-Net and VGG19. For experiment 

2, the datasets of same city show remarkable 

improvements in the AUC value. Therefore, the results 

suggest that the same city taken at different periods can 

improve the accuracy of the classification, not only with 

U-Net, but also with VGG19. 

 

 

                       
Figure 8. The results of ROC curve and AUC 
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It should be noted that while it is challenging to extract 

special types of buildings, such as those where the roofs 

are characterized by different shadows, color intensity, 

and partially covered by trees. Figure 9 illustrates three 

undemolished examples of U-Net in experiment 3, listed 

with the sample of different shadows, color intensity, and 

partially covered by trees. The probability of a building 

being classified as demolished is low (0.17, 0.15, and 

0.04). The proposed method can successfully classify 

such special buildings. The results implied that the 

performance of the demolished building detection method 

proposed in this work is satisfactory. 

 

 
Figure 9. Examples of undemolished buildings 

5. Conclusions 

In this paper, we proposed a novel demolished building 

detection method that used bi-temporal aerial images and 

building polygon data based on the U-Net and VGG19 

architectures. The main contributions of our work can be 

summarized as follows: 

(1) Non-buildings changes from real building changes are 

excluded by using building polygon data. The results also 

suggest a significant reduction in noise due to non-

building changes, such as trees, ground, and roads. 

(2) The architectures, which are based on U-Net and 

VGG19, were implemented for demolished building 

detection. In terms of classification performance, the 

results of U-Net were better than that of VGG19, which 

suggested that U-Net is a useful architecture for image 

classification problems as well as for semantic 

segmentation tasks. 

(3) In this work, the demolished building detection is 

based on building-base rather than pixel level, wherein 

each building in the building polygon data was 

classified as demolished or undemolished.  

(4) The proposed approach accurately identifies 

demolished buildings, as well as addresses the problems 

associated with false-detection. The proposed method 

achieved demolished building detection with low mis-

detection (2.64%) and over-detection (4.56%) rates, 

obtained from an entire urban city with more than 60,000 

buildings. 
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