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Abstract: Buildings are among the most important features of cities. In the suburban or rural regions, buildings are 

normally constructed along the roads, which forms the smooth and consistent patterns so that the building arrangements 

also can be described with network models. In previous studies, network theory has achieved good performance in 

cartography and GIS. In this paper, a study of a building-network is proposed, including the concepts, generation methods 

and centrality analysis. Firstly, with the constraint Delaunay triangulation and the refinement strategy by facing ratio, the 

building-network is generated by considering the buildings and the proximal segments as the nodes and segments of the 

network, respectively. Then, centrality analysis is applied on the building-network, aiming to reveal the crucial 

relationships among buildings, which is useful for understanding the structural properties of the complex network. Four 

different centrality measures, i.e. degree, closeness, betweenness, and eigenvector centrality, are calculated based on the 

building-networks. The buildings show different distribution effects and patterns under the four centrality measures. From 

the results, the degree centrality reveals the local centre of the region; closeness and eigenvector centrality have the ability 

to cluster buildings into different groups; while betweenness centrality can detect the linear patterns. Therefore, using 

network theory to analyse buildings can reveal some inner relationships of buildings and has great potential in the 

application of building pattern detection, classification, clustering and further generalization. 
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1. Introduction

In GIS, network data structures are one of the earliest 

representations, and network analysis remains one of the 

most important and persistent research areas (Curtin 

2007). Previous research has shown that network analysis 

measures can be useful predictors for a number of 

interesting urban phenomena. 

Network analysis or Graph Theory has already been 

applied in cartography for pattern detection and 

generalization (Mackaness et al., 1993). Particularly in 

road network, representations of road infrastructures as 

networks have been widely examined in the fields of GIS 

and network theory. Many studies have been carried out 

and achieved satisfying results. For example, the 

hierarchical structures of road networks can be formed 

with the network analysis (Zhang and Li, 2011). Graph 

theory is also introduced to solve the generalization 

problems of road network (Thomson and Richardson, 

1995). With the centrality measures, the road network can 

be also analysed to investigate the characteristics of its 

representation and  reveal the urban growth mechanisms 

(Crucitti et al., 2006) (Porta et al., 2006) (Lin and Ban 

2017) (Lin and Ban, 2013). With the fruitful research 

achievements, the network analysis is supposed to have 

more potentials in analysing other geographical features. 

Therefore, the complex network theory provides a novel 

way to explore building features.  

A city can be regarded as a complex network (Jiang 

2016). As the two backbones of the city, roads and 

buildings are the most important features on maps. 

Buildings accommodate most urban activities and play as 

the crucial origins and destinations of urban movement. In 

the urban landscape, building plays an important role and 

correlates with urban development. In the real world, 

different regions show distinct distribution characteristics. 

In this sense, exploring buildings can reveal some 

underlying urban characteristics. However, unlike road 

network, which has the natural ability to become a 

network, the network property of buildings are always 

ignored for reasons of their unconnected distribution. It is 

so far fairly little in the spatial analysis of cities, 

specifically saying in urban buildings. The network 

analysis of urban buildings has been studied quite few. 

Previous study can be found in: Sevtsuk introduced an 

open-source Urban Network Analysis (UNA) toolbox, 

which computes five types of network centrality measures 

(Sevtsuk and Mekonnen, 2012).  

The primal aim of this paper is to propose the concept 

of a building-network and the generation method. Through 

applying network analysis methods (centrality analysis) to 

the building-network, the characteristics of the building 

distribution and pattern are revealed. The rest chapters of 

the paper is structured as: in Section 2, the concept of a 

building-network is proposed, the study area is specified 

and the generation process of the building-network is 

described in detail. Section 3 introduces the centrality 
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measures and their application to the building-network. 

Section 4 discusses the centrality results. At last, the 

conclusion is given in Section 5. 

2. Building-network

2.1 Concept of a building-network 

There exist many networks in the world, virtual, physical, 

social etc. A network is a structure defined by nodes, and 

links between them. In geographical features, linear 

features have the natural ability to form a network because 

of their explicit connections, such as road network, 

hydrographic network, and pipeline network 1  (Figure 

1(a)). The above mentioned geographical objects have the 

common features that they are all belong to one-

dimensional linear feature type. With the specific 

connection relationships, linear objects are easy and 

natural to form the network. 

By contrast, building belongs to two-dimensional 

polygonal object in essence. Additionally, the connection 

relationships among buildings are mostly missing; thus, it 

is hard to regard buildings as a network apparently. 

Nevertheless, some buildings are represented with the 

linear patterns, which can be visually perceived with the 

network property (Figure 1(b)). Therefore, regarding 

buildings as the network is possible when there exist linear 

patterns within buildings. 

Figure 1. (a) Road, pipeline, and hydrographic network; 

(b) Concept of a building-network.

1 Figures are derived from the websites: 

https://www.gasnetworks.ie/corporate/company/our-

network/pipeline-map/ 

https://www.eea.europa.eu/highlights/ecrins-map-project-

pinpoints-water 

2.2 Study area 

Because of population density, region functions and 

historical reasons, buildings are presented with different 

distribution features in different regions. As shown in 

Figure 2(a), in the central part of the cities, the buildings 

are normally distributed densely and adjacent with each 

other, which is hardly to be considered as having the 

network property. On the contrary, in the suburban or rural 

regions (Figure 2(b)), the buildings are mostly built along 

roads, which results in many linear building patterns. 

Linear patterns are smooth structures so that they can be 

perceived continuously in visual, which provides the 

potential for buildings to form a network. 

Figure 2. Comparison between (a) city centre and (b) 

suburban region. 

Based on the above descriptions, the network property 

is mainly represented in the suburban or rural regions of 

the city, where exists more residential areas than 

commercial or industrial areas. The buildings in residential 

area normally have the discrete distribution, simple shape 

and small size, which provides the possibility to generate 

a network. In our study, three villages around Dresden are 

selected as the test datasets, namely Weisser Hirsch, 

Pappritz, and Bühlau (Table 2). In the three selected 

villages, lots of obvious linear patterns can be found. These 

linear patterns create visual consistency on the discrete 

buildings so that the buildings can be perceived as network 

visually. The building number of the three village is 923, 

744 and 1127, respectively. To generate the entire and 

complete network, the roads around the buildings are 

ignored in this study.  

2.3 Generation of a building-network 

Node and edge are two compulsory elements which should 

be determined to generate the network. The buildings are 

obviously the nodes of the building-network, here the 

centroids of the buildings are regarded as the nodes. The 

edges should be the connection relationships among 

buildings. Unlike road network, there are no explicit 

connection relationships among buildings, such that they 

should be founded firstly. The proximity graph is used to 

detect the neighboring buildings so that the connection 

relationship of buildings can be built (Zhang et al., 2013). 

https://geoffboeing.com/2016/11/osmnx-python-street-

networks/ 

(a)

(b)

(a) (b)
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Proximity graph is normally derived through constraint 

Delaunay triangulation (CDT). In this study, after getting 

the CDT, the triangles which connect three buildings 

should be deleted (Figure 3(a)); then each two buildings 

connected by the same triangle are detected as proximal so 

that their centroids are connected by a segment. The 

proximity graph is shown in Figure 4(b). 

From Figure 3(b), although the connection 

relationships have been built, it can be found that there 

exist many redundant proximal segments. For example, 

some buildings with distant positions are still connected, 

which violates the visual consistency. Therefore, the 

original proximity graph should be refined by removing 

these improper redundant connections. From the previous 

studies, many refinement methods have been proposed, 

such as Nearest Neighbour Graph (NNG), Minimum 

Spanning Tree (MST), Relative Neighbourhood Graph 

(RNG), Gabriel Graph (GG), and some parameters with 

Gestalt principles (such as distance, orientation, size, 

elongation, shape) (Anders 2003) (Yan et al., 2008). 

However, these refinement methods are mostly used for 

detecting building groups and recognizing patterns. The 

purpose of this study is to generate the building-network; 

thus, they cannot be directly used. 

Figure 3. (a) CDT of buildings; (b) proximity graph of 

building.  

To generate an entire and reasonable building-network, 

the facing ratio of two buildings is considered as the index 

to refine the original proximity graph. Facing ratio reflects 

the degree of two buildings that face with each other 

(Figure 4(a)) (Yang 2008) (Gong and Wu, 2018). The two 

buildings with a higher facing ratio indicates that they are 

more possible to be regarded as having the connection 

relationship. On the contrary, if the two buildings do not 

face with each other, the connection should not be built 

between them. 

The facing ratio between two buildings is calculated by 

Equation (1): 

𝐹𝑎𝑐𝑖𝑛𝑔_𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑎𝑥𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑃𝑟𝑜𝐿(𝐴), 𝑃𝑟𝑜𝐿(𝐵))

𝑚𝑎𝑥(𝑃𝑟𝑜𝐿(𝐴), 𝑃𝑟𝑜𝐿(𝐵))
(1) 

where ProL(A), ProL(B) denote the projection length of 

building A and building B on the two axes of their 

corresponding oriented bounding boxes. As shown in 

Figure 4(b), when calculating the facing ratio of two 

buildings, firstly, the oriented bounding boxes (OBB) of 

the buildings are derived; then, the OBBs are projected to 

their four axes; and the length on the axe is the projection 

length. The overlap rate of the projection length is 

calculated as their facing ratio in this axe. The maximum 

facing ratio of the four axes is regarded as the final facing 

ratio of these two buildings. If the facing ratio equals to 0, 

it means that the two buildings do not face with each other. 

In the examples of Figure 4(b), Facing_ratioAC is 0.912, 

Facing_ratioAB is 0.474, and facing_ratioBC is 0.0. Thus, it 

concludes that building A faces with building B and 

building C. Building B does not face with building C. 

(a)

(b)

(a)

Building2

Building1

A

B

C

Facing ratio

OA

OB

OC

YA

XB
YB

XA

XC

YC

Oriented bounding box

(b)

O
B

O
AOverlap1

Overlap2

Y
A

X
A

Y
B

X
B

O
B

O
C

Y
B

X
B

X
C

Y
C

O
A

O
C

Y
C

Y
A X

A

X
COverlap1

Overlap2

ProL

3 of 8

Proceedings of the International Cartographic Association, 2, 2019.  
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-141-2019 | © Authors 2019. CC BY 4.0 License.



Figure 4. (a) Facing ratio of buildings; (b) calculation of 

facing ratio. 

In the refinement of the original proximity graph, if the 

facing ratio of two building is smaller than the given 

threshold; then, the proximal segments should be deleted 

from the proximity graph. The remained proximal 

segments will be the edges of the building-network. 

2.4 Fine-tuning of facing ratio threshold 

The refinement of the original proximity graph is 

important since it determines the final network. From the 

original proximity graph, it can be found that there are too 

many redundant segments. The refinement should 

eliminate the redundancy as much as possible, meanwhile, 

the completeness of the network should also be preserved 

as large as possible. Therefore, it is necessary to keep the 

balance between this two aspects. 

For this reason, different thresholds of facing ratio are 

selected to test the refinements effects. Taking the village 

Weisser Hirsch as example, the threshold of facing ratio is 

tuned from 0.0 to 0.4. When the facing ratio of the two 

buildings is smaller than the given threshold, the proximal 

edge will be deleted from them. When the threshold equals 

to 0.0, it means that if the buildings do not face with each 

other, the proximal edge will be deleted. The final 

generated building-networks with different facing ratio are 

listed in Table 1 in the appendix. 

In the original proximity graph, there are 2005 edges in 

total. From the refinement results of different facing ratio 

thresholds, the refined proximity graph present the 

following characteristics: (1) with the threshold 

increasing, the nodes and edges of the network become 

decreasing; (2) The connectivity of the entire network 

becomes weaker and weaker. From Table 1, with the 

increasing thresholds, the buildings are divided into more 

and more network communities, so that the connectivity of 

the network becomes less and less. Connectivity reflects 

the connectedness within a network, which is a measure of 

accessibility without regard to distance. A high 

connectivity network denotes low isolation and high 

accessibility. The building-network should include 

buildings as much as possible, which is beneficial for 

generating an entire network. 

The following network metrics in Table 2 are selected 

to measure the network properties in different thresholds. 

Metrics Definition 

Node (N) The number of nodes. 

Edge (E) The number of edges. 

Diameter (D) 
The longest shortest path joining 

any two nodes in the network. 

Average node 

degree (AND) 

The average number of edges 

adjoining a node. 

Average path 

length (APL) 

The average shortest path length 

over the network. 

Clustering 

coefficient (CC) 

The average fraction of the node’s 

neighbours that are also neighbours 

with each other. 

α 

Characterizing the connectivity of a 

network between the observed 

number of cycles and the maximum 

number of cycles. 

β 
Describing the complexity of a 

network. 

γ 

Representing the ratio between 

observed number of edges and the 

maximum number of edges. It can 

measure how close the network is to 

complete. 

Table 2. Metrics of describing network. 

The values of AND, CC, α, β, γ are calculated by Equation 

(2)-(6), respectively: 

𝐴𝑁𝐷 =
2𝐸

𝑁
(2) 

𝐶𝐶 =
1

𝑁
∑

2𝑚𝑖

𝐶𝑖
𝐷(𝐶𝑖

𝐷 − 1)
𝑖∈𝑉

(3) 

𝛼 =
(𝐸 − 𝑁) + 1

2𝑁 − 5
(4) 

𝛽 =
𝐸

𝑁
(5) 

𝛾 =
𝐸

3(𝑁 − 2)
(6) 

where mi indicates the number of edges between the first 

neighbours of node i, Ci
D represents the degree centrality 

of node I in the network. 

Based on the definition, the metrics are calculated and 

listed in Table 1. From the statistics data in Table 1, with 

the facing ratio increasing, the generated building-network 

becomes more and more fragmented. Therefore, based on 

the above analysis, the facing ratio should be set tender, 

thus, setting as 0.0-0.2 should be the better option. In this 

study, we select 0.0 as the threshold. With the refined 

proximity graph, building-network is generated by 

regarding the buildings as nodes and the proximal 

segments as edges (Figure 5). 

Figure 5. Final building-network (threshold = 0.0). 

3. Centrality analysis of a building-network

3.1 Centrality measures 

Network centrality measures are mathematical methods to 

quantify the nodes importance in the network. As the name 

implies, centrality metrics focus on how centrally a node 

is located with respect to its surrounding nodes. Through 

analyzing the nodes centrality, it is possible to reveal the 
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underlying topological mechanisms in the network. In this 

paper, four common centrality indices are adopted to 

analyse the importance of the building in urban building 

network, including degree centrality (DC), closeness 

centrality (CC), betweenness centrality (BC), and 

eigenvector centrality (EC). 

3.1.1 Degree centrality 

Degree centrality is a basic and simple index to measure 

the number of the connections between a given node and 

other nodes within the network. Degree centrality indicates 

that the important nodes in a network should connect to the 

other nodes as much as possible. The degree centrality is 

calculated as Equation (7): 

𝐶𝑖
𝐷 =∑𝑎𝑖𝑗

𝑗∈𝑁

(7) 

where N is the total number of the nodes; aij equals to 1 if 

there is a connection between node i and node j, otherwise 

it equals to 0. 

3.1.2 Closeness centrality 

Closeness centrality measures the shortest distance from a 

given node to all the other nodes, which shows how close 

the node is to the other nodes in the network. The more 

central a node is, the closer the node is to all the other 

nodes. The closeness centrality is calculated by the average 

length of the shortest path between the node all the other 

nodes in the network (Equation (8)): 

𝐶𝑖
𝐶 =

1

𝐿𝑖

𝑁 − 1

∑ 𝑑𝑖𝑗𝑗∈𝑁;𝑗≠𝑖
(8) 

where Li is the average distance from node i to all the other 

nodes; N is the total number of nodes; dij is the shortest 

distance between node i and node j. 

3.1.3 Betweenness centrality 

Betweenness centrality provides the means to quantify the 

likelihood a graph node will lie on a shortest path between 

two other nodes of the graph.  It evaluates the number of 

shortest paths that pass through each node. Betweenness 

centrality measures the extent of a given node which is 

located between the paths that connects all other nodes. It 

quantifies the number of times a node acts as a bridge 

along the shortest path between two other nodes. In the 

graph, a node with a higher betweenness centrality value 

means that this node locates at the center position of the 

graph. The maximum betweenness centrality in a network 

specifies the proportion of shortest paths that pass through 

the most important node. The betweenness centrality of a 

given node i can be calculated as (see Equation (9)): 

𝐶𝑖
𝐷 =∑𝑎𝑖𝑗

𝑗∈𝑁

 (9)

where N is the total number of nodes; njk is the number of 

shortest paths from node j to node k, and njk(i) is the 

number of shortest paths from node j to node k that pass 

through node i. 

3.1.4 Eigenvector centrality 

Eigenvector centrality is a measure of the influence of a 

node in a network (Solá et al., 2013) (Iacobucci et al., 

2017). It assigns relative scores to all nodes in the network 

based on the concept that connections to high scoring 

nodes contribute more to the score of the node in question 

than equal connections to low scoring nodes.  Eigenvector 

centrality shows. In the graph, a node is important if its 

neighbours are important. For a given graph G=(N, E) with 

N nodes and E edges. Let A=(ai,j) be the adjacency matrix, 

i.e. ai,j=1 if node i is linked to node j, and ai,j=0 otherwise.

The eigenvector centrality score of node i can be defined

as (see Equation (10)):

𝐶𝑖
𝐸 =

1

𝜆
∑ 𝐶𝑗

𝐸

𝑗𝜖𝑀(𝑖)

=
1

𝜆
∑𝑎𝑖,𝑗𝐶𝑗

𝐸

𝑗𝜖𝐺

(10) 

where M(i) is a set of the neighbours of i and λ is a 

constant. 

3.2 Centrality analysis 

Based on the calculation metrics, the values of the above 

four centralities for every building in the three test villages 

can be obtained. Buildings with different centrality values 

are displayed in different colours (Table 2). From the 

centrality results, the buildings present different patterns. 

(1) Degree centrality is the most fundamental and

straightforward measure to quantify the network’s 

connectivity. From the Table 2, the buildings which have 

large size, complex shape, or large elongation normally 

have the higher degree centrality values. These buildings 

with high degree values are important and can be regarded 

as the local centers. 

(2) Closeness centrality reveals the level of travelling

convenience of the nodes in a network, which can 

delineate the most accessible area of a network. From the 

distribution pattern, the buildings locate in the central area 

have the higher closeness centrality values while the 

buildings locate at the boundary area has the lower values. 

It presents the radial distribution, Therefore, based on the 

closeness centrality, it can differentiate the buildings 

located in the central or boundary areas. 

(3) For betweenness centrality, it can measure the

function of connectivity of a node in the network. The 

buildings which take part in forming the linear patterns 

normally have the higher betweenness values. These 

buildings are important in the building-network since they 

constitute the skeleton framework of the entire network. 

(4) Eigenvector centrality reveals the importance of a

node from another aspect. If a node connects with many 

other important nodes, it indicates that this node is also 

important in network. From the results of eigenvector 

centrality, the buildings present the clustering ability so 

that it can be used to form the building clusters. 

From the above analysis of different centrality 

measures, the degree centrality focus more on the 

individual building while another three centrality consider 

the impact of other buildings. Specifically, betweenness 

centrality has beneficial for forming building alignments; 

closeness and eigenvector centrality have the ability to 

group buildings into different clusters.  

4. Discussion

The advantages of proposing the concept of a building-

network are described as followings:  
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(1) Using network theory to analysis buildings, which

provides a new way to reveal the inner relationships among 

buildings; (2) comparing with other methods (distance 

idea), the generation of the building-network considers the 

topology relationship to detect the neighbour relationships, 

which makes the network more consistency with the visual 

cognition; (3) the centrality analysis of building-network 

reveals the building patterns. The important buildings of 

the regions can be detected.  

The shortage of the proposed method lies in that the 

buildings should have the discrete distribution; thus, the 

test datasets are derived from residential areas. For the 

buildings in the city centre, which have the obvious block 

distribution, the proposed method may have limitations. 

The potential application fields of building-network 

can be located in building generalization. With the 

importance deriving from the centrality, the buildings can 

be classified so that it can provide the reference to the 

following generalization process. Meanwhile, with the 

centrality analysis results, other network techniques, such 

as network mesh, network Voronoi diagrams, can be 

widely applied into building-network. 

5. Conclusion

This paper proposes the concept of building-network 

whereby the discrete buildings are connected in a network 

so that the network theory can be applied to analyse the 

building distribution. With the help of proximity graph and 

the refinement strategy by facing ration, the building-

network can be generated. Through calculating the four 

centrality degrees, the buildings presents some regular 

patterns, which is beneficial for the further operations, 

such as local centre determination, building clustering and 

building generalization.  

This study is the first step of introducing network 

theory to analyse urban buildings. The further step will be 

focused on using the network theory to achieve some 

specific application, such as building generalization. 
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