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Abstract: The generalization of 3D buildings is a challenging task, which needs to consider geometry information, 

semantic content and topology relations of 3D buildings. Although many algorithms with detailed and reasonable 

designs have been developed for the 3D building generalization, there are still cases that could be further studied. As a 

fast-growing technique, Deep Learning has shown its ability to build complex concepts out of simpler concepts in many 

fields. Therefore, in this paper, Deep Learning is used to solve the regression (generalization of individual 3D building) 

and classification problems (classification of roof type) simultaneously. Firstly, the test dataset is generated and labelled 

with the generalization results as well as the classification of roof types. Buildings with saddleback, half-hip, and hip 

roof are selected as the experimental objects since their generalization results can be uniformly represented by a 

common vector which aims to meet the compatible representation of Deep Learning. Then, the pre-trained ResNet50 is 

used as the baseline network. The optimal model capacity is searched within an extensive ablation study in the 

framework of the building generalization problem. After that, a multi-task network is built by adding a branch of 

classification to the above network, which is in parallel with the generalization branch. In the process of training, the 

imbalance problems of tasks and classes are solved by adjusting their donations to the total loss function. It is found 

that less error rate is obtained after adding a classification branch. For the final results, two improved metrics are used 

to evaluate the generalization performance. The accuracy of generalization reached over 95% for horizontal information 

and 85% for height, while the accuracy of classification reached 100% on the test dataset. 
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1. Introduction 

Digital 3D city models serve nowadays a wide range of 

application fields, such as urban planning, environmental 

simulations, navigation, location-based services, virtual 

3D globes and 3D landscape visualizations, etc. (Biljecki 

et al., 2015). An essential component of such models are 

3D buildings since they significantly influence the visual 

perception of the entire model. To efficiently manage the 

massive amount of 3D building data of an entire city, one 

option is to perform a cartographic generalization of these 

models to remove non-essential geometric details while 

preserving their original overall shape characteristics. In 

this context, the strict rectangular, parallel, and coplanar 

arrangement of the faces of the 3D building models (often 

given as polyhedra in boundary representation) as well as 

building part and roof symmetries, and object defining 

forms and components (e.g. church towers) are frequently 

mentioned. In addition to the management task itself, low 

detailed 3D building models reduce storage requirements, 

shorten geometric computations, and accelerate real-time 

visualizations (Kada, 2006). 

With the widespread availability of area-wide 3D city 

models, various cartographic generalization methods for 

3D buildings models have been proposed. This includes a 

multitude of approaches for simplification and, although 

less common, also for aggregation, symbolization and 

typification. Many of these generalization operators, 

however, involve sophisticated rules that are imprecisely 

defined and have been often developed specifically with 

respect to the geometric properties of the respective data 

sets to which they have been applied. They are rarely 

tested or quantitatively evaluated for large areas. It is not 

uncommon that unrealistic assumptions were made about 

the objects’ shapes, so that these methods cannot be 

effectively adopted for other models. It is therefore not 

surprising that cartographic generalization of 3D building 

models has not progressed from academic studies to real-

world applications yet. 

In recent years, methods of Machine Learning and 

Deep Learning, the latter particularly in the form of 

convolutional neural networks (CNNs), have made 

enormous progress ever since Krizhevsky et al. (2012) 

presented AlexNet for image classification. Since then, 

neural networks have become an indispensable tool not 

only for computer vision, speech recognition, and natural 

language processing, but also for a wide range of related 

tasks and applications. It is therefore not surprising that 

these techniques have once again slowly made their way 

into cartographic generalization. One decisive obstacle, 

however, is the availability of suitable training data that is 

required in large quantities in order to apply these 

technologies effectively. As of today, training data, or the 

lack thereof, is a serious obstacle to the cartographic (3D) 

generalization of building models. 

In this paper, we aim for a cartographic simplification 

of 3D building models by means of a symbolization task, 
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comparable to the concept as described by Thiemann & 

Sester (2006). A complex 3D building model is replaced 

by a 3D building template that is geometrically adapted to 

the original shape, in our case using a CNN. The biggest 

challenges of such an approach are the generation of a 

sufficient amount of training data, the definition of a 3D 

building template, and the CNN architecture specific to 

this task. Following a brief overview on related works on 

the task of cartographic 3D building model generalization 

and on Deep Learning in section 2, the preparation of 

training data and the 3D building template is described in 

section 3. The architecture of the CNN for classification 

and parameter regression of 3D building templates is then 

presented in section 4. In section 5, the training of the 

CNN network is described. Section 6 gives an analysis of 

the results before a conclusion is given and future work 

outlined in section 6. 

 

2. Related work 

The proposed generalization approach for 3D building 

models is closely related to cartographic simplification, 

for which related work is presented below. Furthermore, 

recent developments in the field of Deep Learning that 

are relevant are discussed both in the computer vision and 

cartographic (generalization) domain. 

2.1 Cartographic 3D simplification 

Over the past twenty years, many algorithms for 3D 

building model generalization have been proposed. The 

existing methods can be classified into several categories: 

(1) Using geometrical information for generalization: 

Thiemann and Sester (2006) used a generic parameterized 

template of a typical (residential) building and replaced 

the original 3D building models with symbolic versions 

that were instantiated with parameter values that best 

resemble the original shapes. In this way, a shape 

simplification in conjunction with emphasizing on the 

building object characteristics can be accomplished. Kada 

(2007) generalized building models by gluing building 

fragments that are the result of a space decomposition 

process along approximating planar half-spaces and used 

primitive instances of roof shapes to preserve their 

correct shapes. (2) Using mathematical morphology for 

generalization: Mayer (2005) and Forberg (2007) 

developed scale-space techniques for the automatic 

generalization of orthogonally shaped 3D buildings, 

partially based on the morphological operators opening 

and closing for 3D vector data. By comparison, Zhao et 

al. (2012) presented a mathematical morphology-based 

approach that can generalize complex 3D building 

models in a unified manner by using the semantic 

relationships between components. (3) Generalization 

based on CityGML: Baig et al. (2013) proposed a unified 

generalization framework to derive lower levels of detail 

(LoD) from higher LoD by taking semantics as well as 

geometric aspects of CityGML (Groeger, 2007) buildings 

into account. Fan and Meng (2012) presented a three-step 

approach to derive LoD2 buildings from CityGML LoD3 

models by treating different semantic components of a 

building separately. The steps include simplifying wall 

elements, generalizing roof structures, and reconstructing 

the 3D building. 

2.2 Deep Learning 

Deep learning method is a popular research direction 

nowadays, which has brought revolutionary advances in a 

wide range of fields, such as image recognition, natural 

language processing, medicine, etc. In various deep 

learning methods, Convolutional Neural Networks 

(ConvNets or CNNs) is one of the main neural networks 

trends to solve image-related problems. So far, a 

multitude of different CNN architectures have already 

been proposed, e.g. AlexNet (Krizhevsky et al., 2012), 

VGG (Simonyan & Zisserman, 2014), GoogleNet 

(Szegedy et al., 2014), ResNet (He & Sun, 2014), which 

achieve more and more impressive performances for 

image classification and object detection, even exceeding 

human performance in recent studies. Additionally, 

CNNs are also designed for different types of problems. 

For example, SegNet is proposed for semantic pixel-wise 

segmentation, which can label each pixel with the class of 

its enclosing object region (Badrinarayanan et al., 2017). 

Mask RCNN is a deep neural network aiming to solve the 

instance segmentation problem, simultaneously giving 

bounding boxes, classes and masks for each object in an 

image (He et al., 2017). 

2.3 Deep Learning for cartographic generalization 

In the field of cartographic generalization, Machine and 

Deep Learning has been successfully applied. Lee et al. 

(2017) used different Machine Learning methods to 

classify buildings as a prior step for 2D building 

generalization. Sester et al. (2018) employed semantic 

pixel-wise segmentation solving the sub-problem of 

generalization on 2D building images. The prediction 

from their networks gives regular shapes which are then 

amendable for vectorization. Kudinov (2018) used Mask-

RCNN to predict the polygon types and masks of roof 

segments, then 3D buildings were extruded by ArcGIS. 

Although the accuracy cannot reach the level of manual 

editing, it significantly reduced the manual labour cost by 

fine tuning the predictions instead of manually digitizing 

roof segments. 

Concluding, it can be seen that cartographic 

generalization of 3D building models has long been a 

scientific topic, and Deep Learning method has achieved 

great development and been widely applied into different 

domains. However, using Deep Learning methods for the 

3D building generalization problem still lacks focus, and 

to the authors’ knowledge, there exist no research that 

combines Deep Learning techniques with 3D building 

generalization. Therefore, this paper proposes on a CNN 

method to generalize 3D buildings. 

 

3. Data preparation 

As mentioned earlier, CNN training requires a fairly large 

amount of labelled data. To the best of our knowledge, no 

such data is yet available for the task of 3D building 
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generalization. This problem is exacerbated by the fact 

that there are no algorithms that can satisfactorily solve 

the task of 3D generalization. We therefore limit 

ourselves to a small subset of building shapes for which 

we define a simple generalization based on existing 3D 

models in order to train our networks. The goal is to show 

the feasibility for this simple approach, and then later 

implement a generalization for more complex models, 

e.g. by extending it in a recurrent architecture. 

As a data basis for the cartographic generalization and 

the preparation of training data, the 3D city model of 

Stuttgart, Germany, was used. It was semi-automatically 

reconstructed using a regular elevation grid generated by 

manual stereo analysis of aerial images as well as 

measured break lines (slopes, walls, ramps) and elevation 

points (peaks, valleys) (Wolf, 1999). The footprints were 

taken from the automated real estate map (ALK) that 

were intersected with a digital terrain model in order to 

obtain the elevation of the footprint coordinates. For the 

reconstruction of the roof structure, basic shapes such as 

flat, gable, hipped, pyramid, barrel, shed, domed roofs, 

etc. are selected from a library and the corresponding roof 

parameters are measured in the aerial images. The roof 

shape of complex buildings such as castles, towers or 

churches are assembled from these basic shapes. Due to 

the specific reconstruction method used, this type of 3D 

building models has very detailed floor plans and roof 

structures, but only flat façade elements without 

windows, doors, balconies, etc. The accuracy of the 

measured points is specified in (Wolf, 1999) as approx. ± 

8-10 cm in position and approx. ± 15-20 cm in height. 

Each 3D building model is first automatically 

generalized into the structure consisting of a rectangular 

footprint and a roof with a single ridgeline. This structure 

serves as the generalization results from which the neural 

network is supposed to learn its generalization process (as 

well as the classification of building type). Because CNN 

architectures are mainly built for image data, the models 

need to be converted and labelled for Deep Learning. 

Besides the preparation of the image and label, dataset 

selection is also important for learning. 

3.1 Selection of building data 

The buildings with saddleback, half hip, and hip roof 

(Figure 1) are selected as test datasets because the 

generalized structures of these three-type buildings can be 

uniformly represented (Referring to the preparation of the 

input labels). 

 

 
Figure 1. Three common roof types of buildings. (a) 

Saddleback roof; (b) half hip roof; (c) hip roof. 

 

Deep Learning depends heavily on data. To ensure the 

quality of the learning, the buildings with rectangular or 

rectangular-like footprints should be eliminated because 

these buildings have quite simple generalization (almost 

the same with the original footprints) and occupy large 

amount, which causes an imbalance in the building 

dataset. Therefore, only those buildings with relative 

complex footprints are considered in the learning process. 

Figure 2 displays the process of judging the footprint 

complexity. As shown in Figure 2(c), the minimum area 

bounding box (MABB) of the footprint is proportionally 

shrank (here the ratio is 90%); if the shrank MABB is 

totally covered by its original footprint, this building 

should be eliminated from the experimental dataset. 

Based on this principle, in the example of Figure 2(c), the 

building is selected. 

 

 
Figure 2. The process of judging building footprint 

complexity. (a) The original building footprint; (b) 

minimum area bounding box (MABB) of the footprint; 

(c) shrinking MABB. 

3.2 Preparation of input rasters 

To provide the data in a format compatible with CNNs, 

the boundary representation of a 3D building is converted 

into a raster. This conversion implies three processing 

steps, i.e. rotation, rasterization, and rendering.  

(1) Rotating buildings into the canonical orientation 

(Figure 3(a)). Through rotation, the ridges of the 

buildings aligned to the horizontal axis. Beside 

preventing rasterization artefacts along the edges, another 

effect of the canonical orientation is that, no rotation 

invariants need to be learned during training.. 

Furthermore, the relation between X coordinate and Y 

coordinate can be enhanced, which can simplify the 

learning process and increase the training accuracy in 

some degree (Cohen et al.,  2016).  

(2) Rasterizing each building separately with grid 

cells values based on the corresponding height (Figure 

3(b)). Each building is centered in the grid of 100*100 

pixels. The resolution is kept the same in length and 

width. After adding 6 pixels padding around, the 112*112 

grid is generated, which can be exactly scaled to the input 

of the network (224*224) without errors.  

(3) Rendering the raster by colorbar. Colorbar, 

including a range of RGB colours, is used to map the 

height values in the raster to the corresponding colour 

(Figure 3(c)). The maximum and minimum height values 

correspond to the head and tail colours of the colorbar, 

respectively. Through this way, each grid can generate a 

colour image and the colour information in the image 

represent the relative height information. The 

(b) (c) (a) 

(b) (c) (a) 

Original footprint 
  

MABB 
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correspondence relationship between colour and height is 

calculated by Equation (1): 

 

𝑐𝑜𝑙𝑜𝑟[𝑖] =  
ℎ𝑒𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡.𝑚𝑖𝑛𝑖𝑚𝑢𝑚

ℎ𝑒𝑖𝑔ℎ𝑡.𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − ℎ𝑒𝑖𝑔ℎ𝑡.𝑚𝑖𝑛𝑖𝑚𝑢𝑚
∙ 𝑛 (1) 

 

where i is the ith colour, n is the total colour number in 

colorbar. The similar preprocessing work can be also seen 

in reference (Eitel et al., 2015). 

 

 
Figure 3. Preparation of input images. (a) Rotation; (b) 

rasterization example (Rasterizing one building into 5*5 

grid with padding 1 pixel); (c) rendering building height 

by colorbar. 

3.3 Preparation of input labels 

To generate a training dataset for simultaneously solving 

for the two tasks in a supervised learning approach, two 

label vectors are defined for generalization and roof type 

classification, respectively. 

(1) Input label of roof type classification 

The target vector for roof type classification task is 

defined as follows: 

 

Vectorclassification = (rooftype) (2) 

 

The represented roof types in the dataset include 

saddleback roof, half hip roof, and hip roof and they are 

converted to one-hot encoding as input for our model. 

(2) Input label of generalization 

The target vector for building generalization task is 

described by the parametric shape of a building, which 

includes a building block and an eave (Figure 4). The 

parameters vector is obtained by calculating the minimum 

and maximum extend of the generalized footprint, the 

start and end points of the generalized ridge, and its 

eaves/ridge height ratio (Haala & Kada, 2010). 

 
Figure 4. Parametric shape of a 3D building. 

 

Firstly, a footprint is generalized into a rectangle 

described by four coordinates (Xmin_rec, Ymin_rec) and 

(Xmax_rec, Ymax_rec). Shown in Figure 5, the generalization 

process is described as followings: based on the raster 

image, the boundary pixels are detected and classified 

with respect to their position; then the coordinates of the 

generalized rectangle is calculated as average value of its 

corresponding boundary pixels. For example, Xmax_rec is 

calculated based on the average value of its right 

boundary pixels. However, there are cases where few 

pixels have a displacement with respect to other pixels on 

the same direction (as shown in the circled area of Figure 

5(b)), which can affect the generalization result; thus, 

they have been deleted based on a chosen threshold 

(0.33) as follows. 

 
𝑟𝑖𝑔ℎ𝑡.𝑝𝑖𝑥𝑒𝑙.𝑥−𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑝𝑖𝑥𝑒𝑙.𝑥𝑚𝑖𝑛

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑝𝑖𝑥𝑒𝑙.𝑥𝑚𝑎𝑥−𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦.𝑝𝑖𝑥𝑒𝑙.𝑥𝑚𝑖𝑛
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (3) 

  

 
Figure 5. Generalization process of building footprint. (a) 

Extracting boundary pixels; (b) classifying boundary 

pixels by location; (c) deleting pixels according to 

thresholds; (d) generalized footprint with roof. 

 

Secondly, the generalization of the roof shape 

preserves the main ridgeline and ignores all roof 

superstructures. Since the ridgeline is rotated into 

horizontal, its two terminal points can be represented by 

(Xmin_ridge, Yridge) and (Xmax_ridge, Yridge). Exceptionally, if 

the ridgeline starts or ends outside the footprint rectangle, 

the start or end point is moved inside the building, 

accordingly. 

(a) 

X 

Y 

O 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 1 1 1 1 0 0 
0 2 2 2 2 2 0 
0 1 1 1 1 1 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

(b) 

Maximum height 

Minimum height 

Colorbar Image 

(c) 

Z1 

Block Eave 

Z2 

Z3 

(a) (b) 

(c) (d) 

(Xmax_rec, Ymax_rec) 

(Xmin_rec, Ymin_rec) 
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Thirdly, the colours of the raster image represent the 

relative height, as described in section 3.2. Therefore, the 

parameter roofratio is used to represent the eaves/ridge 

height ratio. Equation (4) is used to calculate roofratio: 

 

𝑟𝑜𝑜𝑓𝑟𝑎𝑡𝑖𝑜 =
𝑟𝑜𝑜𝑓ℎ𝑒𝑖𝑔ℎ𝑡

𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔ℎ𝑒𝑖𝑔ℎ𝑡
= 

𝑍1− 𝑍2

𝑍1− 𝑍3
  (4) 

 

where Z1, Z2, Z3 are shown in Figure 4. 

Based on the above three descriptions, the target 

vector for learning the generalization task is defined as: 

 

𝑉𝑒𝑐𝑡𝑜𝑟𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 

(

 
 
 
 
 
 

𝑋min _𝑟𝑒𝑐
𝑋max _𝑟𝑒𝑐
𝑌min _𝑟𝑒𝑐
𝑌max _𝑟𝑒𝑐
𝑋min _𝑟𝑖𝑑𝑔𝑒
𝑋max _𝑟𝑖𝑑𝑔𝑒
𝑌𝑟𝑖𝑑𝑔𝑒
𝑟𝑜𝑜𝑓𝑟𝑎𝑡𝑖𝑜 )

 
 
 
 
 
 

 

 

(5) 

The above two vectors, i.e. Vectorclassification, 

Vectorgeneralization are used as the input labels of the multi-

task. 

 

4. Networks architecture 

We use ResNet50 pre-trained on ImageNet dataset as 

baseline network, since the pre-trained weights are 

beneficial for faster and better convergence. As the 

winner architecture in the LSVRC 2015, ResNet is 

derived from a simple deep convolution neural network 

by adding skip connections. It has been proved that this 

improved architecture allows for training very deep 

models by overcoming the problem of vanishing 

gradients, and thus benefits from the increase in accuracy 

provided by deeper models (He & Sun, 2014). The added 

shortcut connections form residual units in the network. 

In ResNet50, there are 16 residual units in total. 

4.1 Ablation study 

To examine how the network depth affects the 

performance, an ablation study with ResNet50 conducted. 

Thus, we training different shallower counterparts on the 

dataset, to search the network with optimal depth to the 

necessary feature representations. Here, the depth is 

represented by residual unit and counted from the input to 

the last layer (an activation layer, always following an 

add layer) of the residual unit, an example is marked with 

the pink colour in Figure 7. Since the generalization of 

3D buildings is relatively more complex than the 

classification of roof type, we consider it as the main task 

and use it to train networks with various depths and 

monitor the corresponding training and validation loss 

values. As shown in Figure 6, the loss decreases with the 

increasing depth, approximately. The training loss is 

always higher than the validation loss, which indicates 

that there is no overfitting during the training process. 

The network with the ‘14th’ residual unit before the last 

average pooling layer is considered as having the optimal 

capacity since deeper networks do not improve the 

performance. 

 
Figure 6. Training and validation losses of ResNet50 with 

different depths. 

4.2 Multi-task architecture 

The architecture of multi-task network is built by adding 

a classification branch, shown in Figure 7. It includes pre-

trained layers of Resnet50 as feature extractor and is 

followed by a global average pooling layer (Lin et al., 

2013) and two output layers (Sigmoid layer for regressing 

the parameters for building generalization; Softmax layer 

for roof type classification). The advantage of global 

average pooling layer lies in that it can achieves good 

performance both on regression as well as classification 

tasks (Zhou et al., 2016). The parameters of the feature 

extractor are initialized by parameters of ResNet50 

trained on the ImageNet dataset. The parameters of the 

two output layers are randomly initialized.  

 
Figure 7. The multi-task architecture. 

 

The multi-task architecture 

The single-task architecture 

ResNet50 pre-trained layers 

…… 

[1024×14×14] add_14 

[1024×14×14] activation_43 

[224×224×3] Input 

[8]3D building generalization 

[1024] GlobalAveragePooling2D 

[3]Roof type classification 
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5. Training the network 

5.1 Dataset description 

We build a new training dataset using an existing data 

source of polyhedral 3D building models, which were 

photogrammetrically derived in a semi-automatic fashion, 

belonging to the area of Stuttgart, Germany. This area has 

60138 buildings in total, including 22360 buildings with 

the saddleback, half-hip and hip roofs. By deleting the 

samples with rectangular or rectangular-like footprint 

shapes, 6358 samples are remained, including 4568 

saddleback roofs, 912 half-hip roofs and 878 hip roofs. 

The percentage of the remained samples for training, 

validation and testing are 76.5%, 8.5% and 15%, 

respectively. All samples come with full annotation of the 

generalization result (Vectorgeneralization) and classification 

result (Vectorclassification). 

5.2 Tasks balancing 

The multi-task training involves optimizing a global loss 

with two components: mean absolute error for the 

regression of the parameters for the 3D building 

generalization and categorical cross entropy for roof type 

classification task. However, to achieve a fast and good 

convergence, the two loss components must be balanced. 

, Thus, the global loss function is the weighted linear sum 

of the two loss functions by Equation (6): 

 

𝑙𝑜𝑠𝑠𝑠𝑢𝑚 = 𝑒 ∙ 𝑙𝑜𝑠𝑠𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (6) 

 

where the weights are set as e and 1 which performs the 

best during the training. 

5.3 Class balancing 

We face also a class imbalance problem for roof type 

classification, since the number of the buildings with 

saddleback roof is much larger than the other two 

represented classes. Therefore, the loss of classification is 

calculated as shown in Equation (7) by adding class-

specific weight to each sample, aiming to balance the 

contributions of different classes to the classification loss. 

 

𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
∑ 𝑤𝑘∙𝑙𝑜𝑠𝑠𝑖_𝑠𝑎𝑚𝑝𝑙𝑒𝑖

𝑛
  (7) 

 

where lossi_sample is the loss of the ith sample; n is the total 

number of samples in one batch; Wk=0.46, 2.68, 3.08, 

k=0,1,2, representing saddle back roof, half hip roof, hip 

roof, respectively. The weights are calculated based on 

the sample number in each class. 

5.4 Experiment configuration 

Stochastic Gradient Descent (SGD) is chosen as 

optimization algorithm of the global objective function 

and the parameters of SGD are set as: momentum=0.9, 

nesterov=True and a schedule decay of 1e-8. The 

learning rate is initialized by 0.001. The learning rate 

would be reduced by a factor of 0.1 once there isn’t 

improvement on validation loss data over 10 steps. As 

stopping condition is the lack of improvement of loss 

value on the validation dataset for 20 training iterations. 

Figure 8 shows the training and validation loss values for 

the two tasks. After adding a classification branch, the 

model performance for 3D building generalization task 

has been improved. The final loss value on the validation 

dataset improved from 0.0057 to 0.0039. Furthermore, 

the classification prediction accuracy of the multi-task 

network has reached 100% on the test data. 

 

 
Figure 8. Training and validation losses for (a) 3D 

generalization task and (b) roof type classification task. 

 

6. Analysis  

Since we achieved perfect classification prediction on test 

data，  the following analysis is focused on the 3D 

building generalization task. Two evaluation metrics are 

proposed for measuring the regression performance of 

our network, considering the existing metrics cannot be 

used directly.  

Firstly, an improved confusion matrix is used to 

visualize the performance of the regression problem, 

which is inspired by the work on using classification 

systems in regression domains (Torgo, 1996). Confusion 

matrix is normally adopted to visualize the performance 

of a classification. After discretizing the continuous 

values by keeping the same number of decimals, the 

confusion matrix is available to visualize the difference 

between the true and predicted components. Specifically, 

the normalized coordinates are converted to integer pixels 

and the ratio is accurate to three decimals. After obtaining 

the confusion matrix, the values may not have the linear 

relation with the matrix rank number. Thus, new rows 

and columns are inserted to the corresponding position by 

(b) 
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filling zero, whereby difference can be intuitively 

acquired from its location in the confusion matrix. Figure 

9 shows the improved confusion matrix. 

 
Figure 9. Improved confusion matrixes of building 

generalization vector. The colorbar represents the number 

of samples. 

 

Secondly, the errors between the true and the 

predicted vertexes are measured by the percentage of 

detected vertices (PDV), which is similar to the 

percentage of detected joints (PDJ) used in human pose 

estimation, which judges correctly localized joints under 

normalized threshold (Toshev & Szegedy, 2014). 

However, in the rasterization process, buildings with 

different sizes are proportionally rescaled to the uniform 

scale; as a result, the error in the training process is 

uncorrelated with building size. Therefore, the 

localization precision is directly measured by the distance 

between the ground truth and predicted vertex locations 

without normalization by building size. Figure 10(a) lists 

the accuracy curves of four vertexes within different 

precision thresholds (pixel). For the ratio component, the 

threshold is set with the unit 0.001, a curve of the 

percentage of correctly predicted height ratio is shown in 

Figure 10(b) by varying thresholds. 

 
Figure 10. Accuracy of (a) four coordinates and (b) rood 

ratio over various thresholds. 

 

7. Conclusion  

Applying Deep Learning to solve the 3D building 

generalization as well as roof type classification 

simultaneously is a meaningful attempt, since Deep 

Learning has the ability to solve complex multivariate 

probability distributions. In the proposed method, the 

following five aspects should be noticed: (1) for 

regression problem, the completeness of dataset mainly 

reflects in containing enough data under different 

conditions instead of value distribution; (2) the capacity 

ablation of a pre-trained network is analysed to find 

necessary depth for feature representations; (3) multi-task 

learning can get better performance than single-task by 

balancing their losses; (4) the confusion matrix can be 

improved and used as metric for regression problem and 

can intuitionally reflect the difference between the true 

value and predicted value; (5) PDV is used as the 

performance metric when the value is uncorrelated with 

the size.  

In the problem of generalization, the prediction result 

cannot be exact the same with the customized label, even 

with sufficient and various samples, just like 

cartographers cannot create totally the same 

generalization results. Nevertheless, the difference 

between deep learning prediction and customized label 

(b) 
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Proceedings of the International Cartographic Association, 2, 2019.  
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-147-2019 | © Authors 2019. CC BY 4.0 License.



 8 of 8  

 

may also provide some inspirations for the generalization 

evaluation. 
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