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Abstract: Volunteered Geographic Information (VGI) crowdsourced from volunteering posts, is closely related to 
contributors’ mapping behavior. As the most noticeable VGI source, OpenStreetMap (OSM) is one of the most studied 
objectives in VGI and data contributors. In this paper, temporal-spatial analysis is applied in seeking the temporal and 
spatial patterns of the number of buildings and contributors in Beijing, China. Temporal changes of the number of 
updated buildings, and the population of total, new and quitted contributors, were interpreted, as well as the spatial 
distribution of updated buildings, participated contributors, and frequency of updates. The result suggests that the 
number of updated buildings, participated contributors, new and quitted contributors are growing. Buildings are mostly 
updated by a small number of contributors, the majority of which did not participated in mapping in the previous year. 
Most contributors update buildings for one year without succeeding till the next. Contributors are interested in updating 
a large amount of buildings frequently around landmarks, commercial districts, universities, and transit hubs. They 
update buildings at an expanding range and an increasing density, but their attentions do not necessarily bring large 
quantity of building updates. In general, OSM buildings in developing regions with less complete database are updated 
under similar patterns as developed regions where data are much more complete.  
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1. Introduction
The Volunteered Geographic Information (VGI), whose 
users are also data contributors, is capable of acting as an 
alternative for authoritative geographic data with its up-
to-date database (Fekete, et al., 2015). One of the most 
discussed VGI projects that are applied in multiple means 
addition to authoritative data is OpenStreetMap (OSM) 
(Antoniou, 2017). As OSM is one of the best-known 
sources of framework geographic data that can be 
adapted in geographic services (Elwood, et al., 2012), the 
study of OSM stress its importance in understanding VGI 
(See, et al., 2016). Since VGI is user-generated, its data 
quality is closely related to contributors, especially their 
backgrounds and their interests (Goodchild, 2007). In the 
case of OSM, contributors and their mapping behaviors 
are influential to the datasets, resulting in the uneven 
distribution of data quality in different regions (Girres & 
Touya, 2010; Zhou, 2018; Husen, et al., 2018; Kounadi, 
2009; Yagoub, 2017). Therefore, the analyses for 
participation of contributors are essential to unraveling 
how OSM datasets are completed and modified. 
Temporal-spatial analysis are needed to understand the 
pattern of contribution on both temporal and spatial 
scales, in order to gain more knowledge in deducing the 
possible future of OSM database. 

Although many studies concerning the population, 
component, and motive of contributors were conducted 
through the analysis of OSM data they updated, they 
were mostly conducted in developed regions with 
completed OSM datasets, while studies concerning other 
regions where the completing of datasets are still 
undergoing (Tian, et al., 2019) were less focused. In 
lacking the voluntarily contributed data, authoritative data 
are heavily depended, thus little can be known for social 
implications (Elwood, 2010). Meanwhile, indicators for 
OSM data usually focus on roads rather than buildings, 
while both of them enjoy similar priority in contributors’ 
mapping activities (Imi, et al., 2012).  
In response to that, this study applied temporal-spatial 
analysis to Updated OSM buildings in Beijing in seeking 
the potential pattern of contributors’ mapping behavior 
for better understanding how OSM data were completed 
outside developed regions, in order to provide more 
knowledge on the future of OSM dataset. Four statistical 
indicators were analyzed in this study for temporal 
changes of all and active contributors. They are the 
number of Updated OSM buildings, the number of 
contributors, the number of contributors who newly 
joined in or quitted from data contribution. While in 
spatial analysis, grids were created to specify the spatial 
distributions of the number of updated buildings, 
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participated contributors, and update frequencies. This 
method was employed in both the analysis for general 
patterns as well as annual differences.  
Beginning with a brief introduction of related work in 
contributors’ mapping behavior, the next section will 
draw forth the objective. Research design will be 
expounded in section 3, and results of temporal-spatial 
analysis will be shown in section 4. Conclusions and 
discussions will be stated in section 5. 

2. Related Works  
Current studies concerning OSM contributors’ mapping 
behavior are mainly conducted through analyzing the 
temporal changes and spatial distributions of 
contributors, their participations, and data they updated, 
as well as how the quantity and quality of data are 
influenced by the number of contributors, their motives, 
and their components. OSM data analyzed in these 
studies mainly focuses on OSM data in Europe, where 
OSM datasets are updated frequently by a large number 
of active contributors.  
Studies of contributors’ mapping behavior from the 
temporal scale were conducted through the analysis of the 
number of contributors and the data they updated. In 
general, the number of registered OSM contributors is 
growing in exponent (Haklay & Weber, 2008). Their time 
for participation in general is also changing. 
Contributors’ mapping activities recently shifted from 
afternoon to evening (Yasseri & Quattrone, 2013). 
However, their passions for contribution do not last long. 
Contributors who updated for a long period of time only 
makes up a small portion among all contributors, while 
the majority only participated in updating data in a short 
period of time (Chung, et al., 2015). The analysis of 
contributors’ lifespan suggests that 79% of contributors 
are engaged in updating for 0 to 6 months, while only 
20% of contributors updated for 6 to 72 months, and 1% 
for more than 72 months (Bégin, et al., 2018). 
Meanwhile, events play the role as catalysts for 
stimulating contributors’ contribution. Natural disasters 
increase the number of contributors and data they update 
(Imi, et al., 2012; Xu, et al., 2017).  
On the spatial scale, studies were conducted for the 
distribution of contributor’s location and data they 
update. The majority of contributors’ update data within 
ranges of 50 square-kilometers (Neis & Zipf, 2012), and 
the number of contributors and their participation are 
uneven distributed (Chuang & Deng, 2013). The uneven 
updates of data present itself as the differences of 
contributors’ interests in various types of land-use. Urban 
regions, transport hubs, recreational zones, commercial 
districts and forests are more likely to be updated by 
contributors than other kinds of land-use (Arsanjani, et 
al., 2015). Meanwhile, roles are played differently by 
contributors in relation to their locations. During crisis, 
contributors with great updates are not local to affected 
regions, while local contributors aim at providing local 
knowledge (Poiani, et al., 2016), and contributors 
personalize their mapping activity under different local 
knowledge (Manrique-Sancho, et al., 2018). 

These studies show how contributors’ mapping behaviors 
change in both temporal and spatial scales, but they do 
not answer the question of how their contributions are 
influencing OSM database quality. In response to that, 
several studies were conducted in the relations among 
data quality, the number of contributors, and their 
mapping behaviors. Data quality are generally higher if 
the number of contributors over one square-kilometer 
exceeded the number of 15, and data quality of the first 5 
contributors are most important to general data quality 
(Haklay, et al., 2010). Contributors’ activities for 
updating OSM geometries and descriptions are also 
analyzed, and it suggests that OSM contributors who 
update features and those who provide descriptions are 
both increasing but there is no strong correlation between 
them (Mooney & Corcoran, 2012). OSM road datasets 
are influenced by their contributions as contributors’ 
mapping activities for roads are majorly increasing road 
density than creating new ones (Corcoran, et al., 2013). 
Contributors are influencing OSM datasets differently in 
relation to their participations and locations. Active 
contributors not only create new features on maps but 
also modify data updated by non-active contributors 
(Mooney & Corcoran, 2015). Nodes updated by 
contributors are generally more complete around their 
locations (Zielstra & Hochmair, 2014). 
The studies concerning the number of contributors 
suggests that there is a relation between OSM data quality 
and contributors, but it generalized all participants as a 
whole, neglecting the differences in mapping behaviors 
of individual contributors. Hence, some studies focus on 
the relation between OSM data and the component of 
contributors. The majority of data are from professionals 
equipped with mapping skills and GIS backgrounds, and 
they draw maps with professional software (Yang & Fan, 
2016). Data are also biased due to the component of 
contributors. Descriptions for OSM data are added 
mainly by male contributors, leading to sexualized biases 
in data (Stephens, 2013). OSM data quality and local 
demography are analyzed in some studies, and it suggests 
that OSM data quality is irrelevant to the component of 
white, minorities, women, and population with only high 
school degree (Mullen & Jackson, 2015), but it is 
positively related to population density, the proportion of 
young contributors, their education level, and percentage 
of non-agricultural population (Su & Lei, 2017). 
Previous studies in the relation between the component of 
contributors and OSM data quality indicated that there 
are individual differences in contributors’ mapping 
behavior. But questions remain in whether these 
differences were generated under various motivations. To 
further understanding the mapping behaviors of 
individual contributors, contributors’ mapping motives is 
analysed, and it suggests that communities and social 
relations are essential to contributors’ mapping activities. 
Influences from social relations are various due to 
contributors’ participation as active contributors are more 
likely to be influenced by communities than non-active 
contributors (Hristova, et al., 2013). Motive for updating 
OSM data are also different between active and non-
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active contributors as active contributors are more skillful 
and socially related. Non-active OSM contributors update 
data for completing maps, while active contributors 
mapping activities are related to communities, local 
knowledge, and GIS professions (Budhathoki & 
Haythornthwaite, 2013). OSM data are also related to the 
number of participated contributors. Europe, with a large 
number of contributors, is also updated for massive 
amount of OSM data (Neis, et al., 2013). 
However, current studies concerning OSM contributors’ 
mapping behaviors mainly focus on OSM data in 
developed regions where contributors frequently 
participate in completing OSM datasets, while studies are 
rarely seen in developing regions with OSM datasets are 
continuingly. As contributors in developed regions also 
enjoy more complete OSM datasets (Girres & Touya, 
2010), they might also participate in completing OSM 
datasets with less completeness, leading to different 
patterns of OSM data updates in less developed regions. 
Moreover, the quality and completeness of OSM roads 
are usually taken as indicators in these studies, while 
buildings, similarly significant in contributors’ mapping 
activities (Imi, et al., 2012), are less frequently studied.  

3. Research Design 

3.1 Study Area and Data 
Study area was chosen as region enclosed by Beijing 6th 
Ring Highway, as shown in Figure 1. It covers most of 
the urban regions, containing the majority of buildings 
and functional zones in Beijing metropolis. As one of the 
global cities where capital, commodities, and labor forces 
are highly globalized (Sassen, 2005), Beijing attracts the 
attentions of foreign contributors with experiences in 
updating OSM data and personalized contribution 
patterns, providing a more complex component of 
contributors when comparing to other cities in China. 
Moreover, since OSM dataset in developed regions are 
more complete and with better quality (Girres & Touya, 
2010), Beijing is chosen as it is one of the most 
developed cities in China, where OSM data are 
completed with better quality. It is a window to explore 
the general pattern of contributors’ mapping behavior 
with a growing trend of OSM data with a better quality. 
Therefore, it is chosen as the study area for better 
understanding how OSM dataset were completed in 
developing region. 
Data for experiments includes polygon of the study area, 
polygon of annual Updated OSM buildings, their unique 
object IDs and corresponding usernames indicating the 
contributors making the last updates to this object. As the 
study area is not an administrative area, the polygon of it 
was transferred from Beijing 6th Ring road data that were 
downloaded from OpenStreetMap Data Extracts 
(http://download.geofabrik.de/index.html), where the 
latest OSM data were updated daily. Polygons of updated 
OSM buildings, their object IDs and corresponding 
usernames, between January 1st, 2008 and December 
31st, 2017 were obtained through Overpass API with 
Overpass QL. The API is developed for extracting OSM 

data at a certain place and time using Overpass QL query 
language (OpenStreetMap, 2019). Updated OSM 
buildings were exported in GeoJSON formats and 
transferred into shapefiles. The object IDs of updated 
buildings and corresponding usernames were saved as csv 
files that were later joined to the polygon of updated 
buildings using the object IDs. In doing so, each updated 
building was assigned a new field in the attribute table, 
recording the username of the last contributor making 
changes to it. Since each contributor usually update 
several buildings, values in username field are repeated. 
 

 
Figure 1. Study Area 

3.2 Methods and Steps 
Updated OSM buildings were summarized annually by 
two groups in temporal analysis. They are contributors as 
a whole, i.e. all contributors who participated in updating 
OSM buildings within a year, and active contributors 
identified with Jiang’s head/tail break (Jiang, 2013). This 
method proposed in 2013 is an ideal way for classifying 
long-tail distributed dataset (Jiang, 2013). First, data were 
calculated for a mean as the first threshold. Data with 
values exceeding this threshold are classified as the head 
and data with values smaller than it are classified as the 
tail. Later, data at the head were calculated for a new 
mean, creating the second threshold for classifying the 
head and the tail. These steps are repeated until the head 
is no longer long-tail distributed (Jiang, 2013). 
OSM data updates usually make up long tail distributions 
(Jiang & Jia, 2011; Lin, 2015). In this case, the 
classification of active and non-active contributors was 
achieved through the application of head/tail break 
method to the number of buildings they updated. 
Thresholds for classification were only calculated once 
for each year. They were calculated as the average 
number of OSM building updated by contributors in that 
year, i.e. the total number of updated buildings dividing 
the total number of contributors. Active contributors were 
identified as those whose building updates locate at the 
head of long tail distribution, while others are non-active 
contributors.  
Temporal changes of OSM updates were illustrated in 
histograms for all contributors and active contributors. 
Table containing updated OSM buildings and their 
corresponding contributors were first joined to the 
building polygons using object id for each year. Then, the 
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number of updated buildings were summarized by 
contributors’ usernames, and these usernames were also 
summarized into lists. These steps were to create tables 
containing the number of buildings updated by each 
contributor, and contributors’ usernames list in each year. 
Later on, new and quitted contributors were generated by 
comparing these username lists, and the results were 
counted for the number.  
Same processes were also applied for temporal changes 
of OSM updates from active contributors, as classified by 
head/tail break. The number of updated buildings and 
number of usernames were extracted from results of 
previous step using active contributors’ username list.  
General and annual spatial distribution were analyzed 
with grids where the numbers of buildings and 
contributors, together with the frequency of updates were 
calculated within each cell. These grids were created with 
the range of the study area, dividing the study area into 
multiple 1000m×1000m cells. In each cell, the number of 
updated OSM buildings, participated contributors and 
frequency of updates were calculated based on the spatial 
relation of updated buildings and grids.  
Centroids of building polygons were created in spatial 
analysis to avoid double counting the number of 
buildings in each cell, before intersecting with grids for 
cell ids of location. The attribute table of the results were 
extracted and summarized by cell ids for the number of 
building updates and the attached contributors in each 
cell. These tables containing cell ids and their 
corresponding quantity of updated buildings and 
participated contributors were later joined to the original 
grid files for the analysis of general spatial distributions, 
where ten years of the annual number of updated 
buildings, participated contributors, and frequency of 
updates are summed for each cell. Correlation 
coefficients were also calculated for the spatial relation 
between  

3.3 Statistical Indicators 
Statistical indicators for both temporal and spatial 
analysis are shown in Table 1. The first 4 statistical 
indicators in it are all applied in temporal analysis for 
both active contributors and contributors as a whole. 
While in spatial analysis, the number of buildings, the 
number of total contributors, and frequency of updates 
were calculated in grids for general and annual spatial 
distribution of updated OSM buildings.  
The number of buildings was summarized as the number 
of records in the attribute table of annual OSM building 
updates shapefiles. Since each OSM building is identified 
with their unique object id and recorded as an individual 
row in attribute tables of annual OSM building updates 
shapefiles. The number of records in these attribute tables 
thus represent the number of buildings updated by 
contributors in each year.  
The number of total contributors was summarized as the 
number of non-repeated usernames representing the last 
contributors who participated in updating OSM buildings. 
New and quitted contributors were summarized through 
comparing the non-repetitive username lists in two 

successive years. Contributors with their usernames 
appearing in the username list of a certain year but not in 
the previous year were considered as new contributors 
who newly joined in updating OSM buildings in this 
year, and vice versa. The numbers of them are recorded 
annually. 
 

Statistical 
Indicators 

Expressions 
and 

Calculations 
Explanations 

Number of 
Buildings 

Q The number of Buildings 
updated by all contributors. 

Number of 
Total 

Contributors 

N The number of all 
contributors who updated 
data. 

Number of 
New 

Contributors 
, 

I= A-A B 

The number of contributors 
who updated data in one 
year but not in the previous 
year.  
A: Contributors in one year;  
B: Contributors in the 
previous year. 

Number of 
Quitted 

Contributors 
, 

O=B-A B 

The number of contributors 
who have not updated data 
in one year but in the 
previous year.  
A: Contributors in one year;  
B: Contributors in the 
previous year. 

Frequency 
of Updates 

F The number of years when 
OSM buildings were 
updated. 

Table 1. Statistical Indicators 

Frequency of updates were counted as the number of 
years when buildings were updated. It is only applied in 
spatial analysis when illustrating the spatial distribution 
of how OSM contributors update building. If buildings 
within one cell of the grid were updated in a certain year, 
the frequency of update would be added for one. 

4. Results 

4.1 Temporal Changes for All Contributors 
Temporal changes of the number of updated buildings, 
the number of contributors, and the number of new and 
quitted contributors were counted by year, the results of 
which are shown in Figure 2. 
In general, the number of updated OSM building is 
increasing. As it is shown in Figure 2 (a), there are only 
52 buildings updated in 2008, while there are 12,399 
buildings updated in 2017, which is 237 times more than 
the former. Although fluctuation is observed, the 
distribution appears in a growing trend where more 
buildings are updated in more recent years. 
The numbers of total, new and quitted contributors are 
also increasing annually, as shown in Figure 2 (b) and (c). 
They all appear in continual growths, except for the slight 

Proceedings of the International Cartographic Association, 2, 2019.  
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-149-2019 | © Authors 2019. CC BY 4.0 License.



 5 of 10 

 

reductions in 2015.The numbers of total, new and quitted 
contributors have increased 22 to 29 times since 2008. 
The number of contributors is only 7 in 2009 and 2008, 
while it is doubled in 2010 tripled in 2011, and 22 times 
more in 2017. 
 

 
Figure 2. Temporal Changes of Updates for All Contributors 

Most of the contributors only update buildings for one 
year without continuing till the next year as it is shown in 
Figure 2 (c). The numbers of quitted contributors in each 
year are almost equivalent with the numbers of new 
contributors in the previous year. There are 48 new 
contributors participated in updating OSM buildings in 
2012 and 104 in 2015, while there are also 46 quitted 
contributors in 2013 and 105 in 2016.  

4.2 Temporal Changes for Active Contributors 
Temporal changes of the number of updated buildings, 
total, and new contributors are shown in Figure 3. 
The majority of updated buildings are provided by active 
contributors, and there is a growing tendency in it. As 
shown in Figure 3 (a), active contributors updated 11,052 
buildings in 2017, taking up 89% of the total number of 
all 12,399 buildings updated in that year. They also 
updated 1310 buildings in 2012 while all contributors 
updated 1496 buildings, making up 87% of the latter.  
Meanwhile, active contributors only take up a small 
proportion of the total contributors, and the number of 
them keeps growing annually. As it is shown in Figure 3 
(b), 2 out of 7 contributors in 2008 are classified as 

active, while 11 out of 161 are active in 2017. The 
number of active contributors remains below 20 
throughout the study period 
 

 
Figure 3. Temporal Changes of Updates for Active Contributors 

Moreover, new contributors make up the majority of 
active contributors. As illustrated in Figure 3 (c) the 
number of new contributors increased annually with the 
number of active contributors, and it remains at 71% to 
91% of the population of active contributors. In 2012, 10 
out of 11 active contributors are new comers, and there is 
only 1 contributor who participated in updating buildings 
in the previous year. The number of new contributors 
rises to 14 in 2016 when the total number of contributors 
is 17, taking up more than 82% of the latter.  

4.3 General Spatial Distributions of Contributors’ 
Mapping Activities of Buildings 
General spatial distributions and statistics of updated 
buildings participated contributors and frequency of 
updates are shown in Figure 4. 
OSM contributors mainly update buildings around 
landmarks, universities, commercial districts and traffic 
hubs. As shown in Figure 4, the hotspots of the number 
of updated buildings, participated contributors and the 
frequency of updates majorly locate at these places: i) the 
Forbidden City and nearby commercial, governmental, 
residential districts and tourist attractions; ii) commercial 
and residential districts between Dongzhimen and 
Jianguomen, and between Beijing South Railway Station 
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and Yongdingmen; iii) nearby regions of universities. 
More specifically, hotspots appear in these locations: 

 The Forbidden City and nearby commercial and 
residential districts, government departments, 
and tourist attractions  

 The commercial and residential districts between 
Jiangmen and Dongzhimen 

 Nearby regions of Peking University and 
Tsinghua University  

 The residential districts near industrial parks in 
Jiugong and Yizhuang 

 Commercial and residential districts between 
Beijing South Railway Station and 
Yongdingmen 

 Nearby regions of Beijing Jiaotong University 
 Wangjing SOHO 

 

 
 Figure 4. General Spatial Distribution of Updated OSM 
buildings 

Buildings are updated majorly near traffic hubs, 
universities, commercial districts and landmarks within 
5th Ring Highway and the southeastern corner between 
5th Ring and 6th Ring. Figure 4 (a) and (b) illustrates that 
the number of buildings appears in a long tail distribution 
with the maximum value of 504 and a spatial distribution 
as mentioned. Hotspots are at listed locations, except for 
Beijing Jiaotong University and Wangjing SOHO. 
Contributors are attracted by traffic hubs, universities, 
busy commercial districts and landmarks. Figure 4 (c) 

and (d) suggests that the number of contributors has a 
similar statistical and spatial distribution as the number of 
updated buildings, with the maximum value of 19 and a 
long tail distribution. Locations of hotspots are generally 
consistent with buildings, except for the residential 
district around industrial parks in Jiugong and Yizhuang. 
In addition, hotspots also appeared in Beijing Jiaotong 
University and Wangjing SOHO. 
Buildings are most frequently updated in similar 
locations. Figure 4 (e) and (f) suggests that the frequency 
of updates show in a long tail distribution with the 
maximum value of 8, and its hotspots cover all listed 
locations. Moreover, factories inside the industrial park in 
Jiugong and Yizhuang are also updated frequently, 
highlighted as hotspots for frequency of updates. 
Meanwhile, differences are also observed in the spatial 
distributions. Inconsistencies of their hotspots appear in 
locations near Beijing Jiaotong University, Wangjing 
SOHO, and the industrial and residential districts in 
Jiugong and Yizhuang. 

4.4 Annual Spatial Distributions of Contributors’ 
Mapping Activities of Buildings  
Annual spatial distributions of the number of updated 
buildings and participated contributors are shown 
separately in Figure 5 and Figure 6. Since the frequency 
of updates is defined as the number of years when 
buildings were updated, this statistical indicator is 
counted as one in all cells when analyzing annually. 
The range of contributors’ mapping activities for building 
expands from the center, with an increasing density and 
number of hotspots. Earliest updates for building appear 
within the 5th Ring, and the first hotspots of it are 
observed within the 2nd Ring together with the northwest 
corner between 4th and 5th Ring. Outside the 5th Ring, 
updated buildings first appear near primary roads. 
Participation of contributors shows a similar distribution, 
but the first hotspots of it appears within the 2nd Ring, as 
well as the northwest corner between 3rd and 4th Ring 
Updated buildings mainly scatter in the northwestern 
region in 2008, while they spread out to the entire 6th 
Ring in 2011. The number of cells with updated buildings 
keeps growing afterwards, with an increasing density. 
Hotspots for the number of buildings and contributors 
appears in the center city within the 2nd Ring and the 
northwestern corner of the 5th Ring at the beginning, and 
the numbers of them keep growing afterwards. 
Inconsistency in the spatial distribution is observed 
between the number of updated buildings and participated 
contributors. The first hotspots appear in different year, 
and location of their hotspots is not overlapping with 
each other in the same year. Hotspots of updated 
buildings first appear in 2009, while hotspots of 
participated contributors are not observed until 2012. In 
this year, hotspots of participated contributors locate 
within the 2nd Ring and in the northwest corner in the 5th 
Ring, but the location is far from the hotspots of updated 
buildings. These inconsistencies suggest that the spatial 
distributions of updated buildings and participated 
contributors are different 
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Figure 5. Annual Spatial Distribution of the Number of 
Building 

In response to that, Pearson correlation coefficients 
among buildings, contributors, and active contributors 
were calculated annually to testify the correlation 
between the spatial distributions of updated buildings and 
participated contributors. The result is shown in Table 2 
 

 
Figure 6. Annual Spatial Distribution of the Number of 
Contributors 

Pearson correlation coefficient suggests that there is a 
moderate to weak level of correlation between the spatial 
distributions of updated buildings and participated 
contributors, both active and as a whole. The correlation 
coefficients of the spatial distribution of buildings and all 
contributors in each year are mostly below 0.4, so are the 
correlation coefficients between buildings and active 
contributors.  
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Years Correlation Coefficients 

 

Buildings vs. 
Total 
Contributors 

Buildings vs. 
Active 
Contributors 

2008 0.767** 0.394 
2009 0.876** 0.407** 
2010 0.384* 0.488** 
2011 -0.004 -0.051 
2012 0.431** 0.248** 
2013 0.141** 0.171** 
2014 0.1** 0.258** 
2015 0.33** 0.384** 
2016 0.235** 0.282** 
2017 0.216** 0.221** 
**. Correlation is significant at the 
0.01 level (2-tailed). 
*. Correlation is significant at the 
0.05 level (2-tailed). 

Table 2. Pearson Correlation Coefficient of the Spatial 
Distribution of Buildings, Contributors, and Active Contributors 

Correlation coefficients of the spatial distribution of 
updated buildings and total contributors exceed 0.4 for 
only 3 times, with 2 years exceeded the critical value of 
0.6. Correlation coefficient in 2011 is not statistically 
significant. In general, these coefficients are between 0.1 
and 0.4, with only 2 exceptions exceeded 0.7.  
Meanwhile, correlation coefficients of the spatial 
distribution of buildings and active contributors are at a 
similar level. Other than the two values exceeded 0.4 in 
2009 and 2010, as well as the two statistically 
insignificant results in 2008 and 2011, the correlation 
coefficients are generally below 0.4. These coefficients 
suggest that the correlation between buildings and active 
contributors is not strong. 
The moderate to week correlation between the spatial 
distributions of updated buildings and contributors, both 
active and as a whole explained the phenomena of 
inconsistency. Although similarity exists between the 
spatial distribution of updated buildings and participated 
contributors, buildings at locations attracting most 
contributors do not necessarily get updated.   

5. Conclusions and Discussions 
In this paper, temporal-spatial analysis was conducted for 
seeking the pattern of contributors’ mapping behavior of 
OSM buildings through the temporal and spatial changes 
of OSM data. The result suggests that OSM building data 
in developing regions with less complete database are 
updated under similar patterns as developed regions 
where data are much more complete. These patterns of 
contributors’ mapping behaviors provide additional 
knowledge on how OSM data were updated outside 
developed regions, implying that the background and 
components of contributors could be similar with those 
who participated in updating OSM data in developed 

regions, further providing potential objectives for future 
studies.  
As shown in temporal analysis, i) the number of updated 
buildings, participated contributors, new and quitted 
contributors are growing between 2008 and 2017, with 
237 times of increase in the number of updated buildings, 
and 22 to 29 times in the number of all, new and quitted 
contributors. ii) Data are mostly updated by a small 
number of contributors, the majority of which did not 
participated in data contribution in the previous year. iii) 
Most contributors only updated buildings for one year 
without continuing updating in the successive year. 
As illustrated in spatial analysis, i) locations with the 
greatest number of updated buildings, participated 
contributors, and frequency of updates are generally 
around landmarks, commercial districts, universities, and 
transit hubs, ii) Contributors update buildings at an 
expanding range in space, with an increasing density. iii) 
The spatial distributions of updated buildings and 
participated contributors are correlated at a moderate to 
weak level, suggesting that the attentions drawn from 
contributors towards a certain place do not necessarily 
bring large quantity of building updates to it. 
Meanwhile, several shortages in this research can be 
improved in relative future studies. First, only ten years 
of data were analyzed at an annual scale in this study, 
while smaller scales and longer study period for temporal 
analysis can be applied for more detailed temporal-spatial 
patterns of data updates. Second, the frequency of 
updates was calculated as the number of years when 
buildings were updated by contributors, but a building 
can be updated for multiple times within a year. An 
option to consider in better determining frequency of 
updates is the change of OSM building versions. Third, 
the analysis focuses on OSM buildings as it is a major 
feature updated by contributors other than roads, while 
contributors’ mapping behavior for other features might 
have different temporal and spatial patterns. Moreover, 
the analysis of behavior takes contributors as groups, 
while individual contributors might be unique in mapping 
behaviors.  
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