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Abstract: Urban heat risk management is an urgent issue in Japan. Although it is difficult to evaluate heat risk at spatially
fine scale due to measurement data restrictions, heat risk varies depending on the location of the people. As a first step
of developing smart navigation system for managing heat risk, we try to evaluate personal heat risk by combining ground
surface temperature observed from an aircraft and people location acquired from mobile phones at the same time. G star
statistic is used to detect high risk areas considering instantaneous co-occurrence of high temperature distribution and
walking people density.

Keywords: Heat Risk, Exposure, Hazard, Vulnerability, G star statistic, Global Positioning System

1. Introduction

Due to urban heat island effect and global warming, health
damages caused by heat waves are rising in the world as
well as in Japan. In fact, heat strokes caused by large-scale
heat waves have been reported in recent years (Rooney et
al., 1998; Beniston, 2004; Le Tertre et al., 2006; Hajat et
al., 2006; Clark et al., 2010; Steffen, 2014; Richardson,
2015; Klinenberg, 2015; Lemonsu et al., 2015; Mora et
al., 2017; Zampieri et al., 2017; Sailor et al., 2019). Im-
proving urban resilience against heat risk is an urgent task
(Solecki et al., 2005; Gill et al., 2007; Milan et al.,2015). It
is especially important to take measures against heat risks
during the summer Olympic Games in 2020 Tokyo.

The heat waves impacts on human health, such as dehydra-
tion and dysfunction, become serious when people are ex-
posed to heat for a long time (Rooney et al., 1998; Richard-
son, 2015). So, to evaluate the heat stress of individual
people, it is necessary to know not only heat intensity (i:
hazard) but also how people were exposed to the heat (ii:
exposure). As temperature changes greatly by location due
to the surrounding surface conditions and each individual
walking patters are different, it is not easy to evaluate both
(i) heat hazard and (ii) exposure of each individual at the
same time with conventional methods.

Regarding (i) hazard, the ground surface temperature data
is useful to know heat environment in each place. In fact,
ground surface temperatures reflect heating on concrete
and cooling on parks/grassland more sensitively than air
temperatures (Richardson, 2015). The ground surface tem-
perature data observed by the satellite, such as ASTER
(Advanced Spaceborne Thermal Emission and Reflection
radiometer; Spatial Resolution: 90m) and MODIS (MOD-
erate resolution Imaging Spectroradiometer; Spatial Reso-
lution: 1km), are publicly available in these days. These
data would be valuable to analyze thermal condition in a
local spatial scale.

Regarding (ii) exposure, collecting and managing location

information of people has been done through mobile sens-
ing in recent years. For example, Agoop Co., Ltd. (https:
//www.agoop.co.jp/) provides location information logs
obtained from applications of smartphones. The logs are
acquired by every 30 minutes intervals or 500m to 1km
moves. This Global Positioning System (GPS)’s informa-
tion will be useful to know movement of individual peo-
ple, which determines exposure to heat. To find an area
in which people are highly exposed to heat hazard, it is
necessary to consider spatial cluster of people flows.

Given these backgrounds, as the first step of developing
smart navigation system to reduce heat risk of individual
people, this study attempts to quantify heat stress of each
people by employing ground surface temperature data and
mobile sensing data. Furthermore, spatial hots spots of
people’s heat stress is detected using an approach, which
we will develop later, based on the G star (G∗) statistic
(Getis and Ord, 1992), which is a cluster detection ap-
proach, which is well-known in spatial statistics (Fischer
and Getis, 2009).

The reminder of this study is as follows. Section 2 intro-
duces G∗ statistic and discusses how to apply this statistic
to people flow data. In Section 3, we apply G∗ statistic to
the analysis of heat stress. Finally, in Section 4 we show
the future direction of research.

2. Methodology

2.1 G* Statistic

The G∗ statistic is a popular test statistic to detect hot spot,
such as high-risk area, economically agglomerated area,
and ecological community, on a geographical space (Getis
and Ord, 1992). The G∗ statistic for a sample site i ∈
{1, . . . , n} is defined as follows:

G∗
i =

∑n
j=1 wi,jyj∑n

j=1 yj
, (1)
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where where yj represents the observation at j-th site. wi,j

represents the spatial proximity between the sample sites i
and j. The proximity can be defined by a variable indi-
cating 1 if the distance between the sites i and j is shorter
than a threshold distance, and 0 otherwise. Alternatively,
the proximity may be given by a distance-decay function.

The G∗
i takes a non-negative value. A large G∗

i suggests
a concentration of large yj values nearby the site j. For
example, if yj represents ground temperatures at the site
j, the large G∗

i value means a considerably high ground
temperatures nearby that site. The statistical significance
can be evaluated analytically, or numerically e.g. using a
bootstrap approach. See Getis and Ord (1992) for further
details.

Unfortunately, the original G∗
i statistic assumes samples

distributed over a 2-dimensional space. In other words, the
statistic is not readily applicable to our GPS data (Figure
1). The next section explains how to apply it to our data.

Figure 1. Image of our people flow data

To apply the G∗ statistic to our data , we need to define
the proximity WI,J between the flow I and J . The resent
spatial statistical papers such as Tao and Thill (2016) and
Ermagun and Levinson (2018) have studied proximity be-
tween people flows. Based on their discussions, we defined
the proximity WI,J as follow:

WI,J =
1

nInJ

∑
i∈I

∑
j∈J

wI,J . (2)

In Equation (2), wi,j denotes the spatial proximity between
a GPS point i, which is in I-th flow, and a point, which is
in J-th flow. We defined the proximity using an exponen-
tial decay function exp(−di,j), where di,j is the Euclidean
distance separating these points. Equation (2) evaluates the
proximity between flows I and J by averaging the proxim-
ities between GPS points in the I-th flow and those in the
J-th flow (see Figure 2).

Figure 2. Image of the proximity between people flow I
and J

Spatial concentration of large yI values can be quantified
using Equation (3), which is given by substituting Equation
(2) into Equation (1):

G∗
I =

∑N
J=1 WI,JyJ∑n

J=1 yJ
. (3)

In our analysis, the G∗ statistic for flow data (Equation (3))
is used to detect hot spots of people’s heat stress. The heat
stress of J-th people is defined as

yJ =
∑
j∈J

tjδ[gj > 30](gj − 30), (4)

where gj is the ground temperature at the j-th GPS point,
and tj is the estimated time spent at the point, which we as-
sume 0.5 (= 30 minutes), δ[•] is an indicator returning 1 if

• is satisfied, and 0 otherwise. yJ quantifies how long J-th
people walk on hazardous heat areas, which are defined by
areas with the mean ground temperatures being more than
30 degrees at the target period. Equation (3) indicates a
large value in areas with many people being suffered from
hazardous heats. That is, Equation (3) detects high risk
heat areas considering individual people’s behavior. Be-
cause Equation (3) is identical to the standard G∗ statistic,
the statistical inference for the original G∗ statistic is read-
ily available.2.2 G* Statistic for People Flow Data

The GPS data we will study is a collection of people loca-
tions (2D coordinates) by 30 minutes (see Figure 1), or by
500m or 1000m of movement for moving people. We fo-
cus not on individual GPS points but on flow of individual
people indexed by I ∈ {1, . . . , N}. I-th flow is composed
of a set of nI spatial coordinates, which we will index by
i ∈ {1, . . . , nI}.

3. Results and Discussion

3.1 Approach

For ground surface temperatures data, we used thermal im-
age observed from a helicopter (spatial resolution: 5 m; ob-
servation period: 11:30–13:00, August 5, 2016; weather:
sunny), which is shown in Figure 3. For a data of in-
dividual people movement, we used Agoop’s “Point type
floating population data”. We analyze individual level heat
stress by applying the approach we developed in the previ-
ous section. The target area is the center of Tokyo shown
in Figure 3.

Regarding exposure, our targets are pedestrians. This is be-
cause pedestrians are directly exposed to high temperatures
and solar radiations. Unfortunately, because the above-
mentioned people flow data do not have attributes such as
traffic modes, we need to classify the GPS data into walk,
and other transportation modes (see Figures 4 and 5). The
criterion of walk is that the average moving speed is less
than 6km/h in each movement. 6km/h is equivalent to 1.5
times faster than 4km/h which is often assumed as average
walking speed. In addition, when the movement before and
after movement at 6km/h is less than 6km/h, it is divided
into two people flows data (Yamagata et al., 2019). In this
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Figure 3. Surface temperature

research, we analyze only people flow tagged by walk ex-
tracted by the above assumption. Refinement of the pedes-
trian identification method is an important subjects in the
future.

3.2 Results

Figure 6 shows spatial clusters of pedestrians with heat
stress evaluated by G∗

I in Equation (3). G∗
I is small in ar-

eas nearby Tokyo station and Shinbashi station. The result
suggests that the heat stress of pedestrians in these two ar-
eas is relatively small.

As shown in Figure 3, the ground surface temperature in
this two areas is relatively low. Therefore, this result is
reasonable. Moreover, it is found that pedestrians with
high heat stress are concentrated in near Akihabara Sta-
tion, Suidobashi Station, Jimbo-cho Station, Hamamatsu-
cho Station. This is probably because the walking distance
tends to become longer in these areas where the station
density is relatively low. The result suggests that consider-
ing the traveling time of pedestrians is important to prop-
erly evaluate the heat stress.

4. Concluding Remarks

This study developed a new approach to detect high heat
risk areas considering people exposure to heat stress us-
ing people location information observed by GPS. Then,
the proposed approach is tested for the city center area of
Tokyo. The result suggests that locational heat stress of in-
dividual people changes street by street level. This kind of
GPS-based heat risk evaluation approach will be an impor-
tant step to use geo-sensors towards personal navigation
system which could be a very important tool for manag-
ing heat risk as well as an adaptation measure to climate
change.

We have to address many issues before actually test this
system operationally. Firstly, we need to improve the

Figure 4. GPS data Classification results

Figure 5. GPS data points of estimated walking pedestrians
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Figure 6. Evaluated G∗ statistic

pedestrian detection accuracy. For that purpose, supervised
machine learning techniques to classify actual pedestrian
counts using new GPS sensors will be useful to increase
the accuracy. Secondly, we need to improve the data on
vulnerability of each individual people. Elders are likely
to be more vulnerable to heats than young people (Gonza-
lez et al., 2008; Worfork, 2000). In fact, combination of
improved GPS and socioeconomic data such as age distri-
bution and income are anticipated in the near future. In
fact, the use of quasi-zenith satellites is expected to im-
prove the precision of GPS information; the location error
is expected to be at most 1 m for mobile user (Inaba et al.,
2009; Hsu et al., 2016; Guo et al., 2017). Thirdly, as heat
conditions change dynamically over space and time. A
spatiotemporal modeling is needed to predict heat and peo-
ple behaviors by using multi-scale observations and people
sentiments data such as tweets (Yamagata et al., 2015; Mu-
rakami et al., 2016).
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