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Abstract: One of the main challenges that blind pedestrians have to cope with in their daily life is orientation and 

navigation while walking the urban space. In our previous research, a computerized network route calculation algorithm 

for blind pedestrians was developed, which relies on OpenStreetMap (OSM) mapping data, aimed at calculating optimal 

routes in terms of accessibility and safety. Despite the potential and practicability of our solution, critical mapping data 

is still missing in OSM to allow a comprehensive and scalable solution. One data type is related to pedestrian traffic 

flow that has been found to influence the path blind pedestrians will choose to walk. Artificial Neural Networks (ANN) 

model, which allows learning and predicting different phenomena from training samples by investigating the correlation 

and effects among various environmental features, is developed and used to model and predict pedestrian traffic flow, 

while relying on the existing OSM data. To model the ANN, we have relied on parameters and factors related to the 

streets’ geometrical and topological configuration, as well as points of interest nearby, e.g., public transportation and 

shops, to name a few. The ANN model was trained using training samples of pedestrians traffic flow collected in the 

center of Tel-Aviv. Implementing the computed ANN model, nearly 90% of the testing data was successfully predicted. 

We believe that this ANN model can accurately generate new data, which together with the existing OSM data, can 

greatly contribute and augment the reliability of route calculation algorithms for blind pedestrians. 
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1. Introduction 

Despite the decline in the percentage of people with visual 

impairments in the population, their numbers are still very 

high. As of 2018, 441.5 million visually impaired people 

live in the world; 36 million of them are completely blind, 

and the rest with moderate to high visual impairment1. 

Blind people have many challenges in their daily life and 

activities. One of the main challenges they face is 

orientation, navigation and walking from place to place in 

the urban space. Because of the lack of vision, it is more 

difficult for them to use landmarks - street names, points 

of interest (POI), street configuration - which allow 

sighted pedestrians to orient themselves in the urban 

space. In addition, blind pedestrians are not always able to 

identify obstructions on the way. For example: street 

lamps, trees and garbage containers placed in the middle 

of the sidewalk, parking entrances and barriers on their 

path. As a result of not knowing these factors beforehand, 

they prefer to avoid walking outside, specifically in 

unknown areas, which limits them in terms of equality, 

preventing them to fully integrate into society. 

Most solutions offered to this group rely on technologies, 

which translate and communicate the immediate 

                                                           
1 World Health Organization: Blindness and vision impairment 

surroundings (e.g., image processing and text-to-speech). 

Another approach, which is more extensive in its solution, 

is to find routes that are tailored to the blind pedestrians’ 

preferences. Such that instead of following the shortest or 

fastest route, they follow an accessible, safe, simple route, 

with fewer obstructions. In our previous research (Cohen, 

2017), we developed a route calculation algorithm 

designed for blind pedestrians, based on their needs and 

requirements. The algorithm is based on the geographic 

information layers that exist in the OpenStreetMap (OSM) 

mapping infrastructure, which relies on crowdsourced 

data and geographic information uploaded by the 

community to the Internet. OSM offers several key 

advantages: 1) OSM data and information can be used 

freely and without charge, without legal or administrative 

restrictions; 2) The volume of the data mapped in OSM is 

constantly growing on a global scale; 3) The OSM 

database enables the mapping of data types, such as 

sidewalks, traffic lights, accessible pedestrians signals, 

that do not exist in other global databases; 4) Similar to 

Wikipedia, OSM is based on crowdsourcing, so that new 

and updated data are constantly being received, validated 

and stored; 5) The OSM system provides mapping and 
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calculation solutions for the creation of various routing 

services. 

One of the conclusions from our previous work was that 

despite the extensive OSM mapping, and the ability to use 

this information for blind pedestrian route calculations, 

there is still a lack of data, both in terms of coverage and 

type, to allow a comprehensive and scalable solution. 

Data, such as sidewalks, walking paths and pedestrian 

crossings, is missing in many places. But more than that, 

information for time-based phenomena, such as the traffic 

volume of pedestrians throughout the day, does not exist 

at all. Therefore, the main objective of this study is to 

investigate, analyze, and present capabilities that enable 

the calculation of pedestrian traffic flow. 

Our hypothesis is that the missing data can be completed 

by understanding the spatial correlation existing among 

the physical phenomena and the spatial structure. For 

example, the presence of shops along a street indicates the 

presence of a sidewalk, thus increasing the likelihood that 

more people will walk on this street. One of the most 

popular and powerful techniques, which draws 

conclusions about data and information through their 

correlation with other features, is machine learning. 

Machine learning is concerned with the development of 

algorithms designed to enable the computer to learn from 

examples, operating in a variety of computational tasks, in 

which classical programming is limited or impossible. By 

using and implementing these algorithms, it will be 

possible to draw conclusions related to the existing 

correlations and create models that can be used to analyze 

complex data and produce accurate results. We believe 

that by exploring the correlations between data and 

physical phenomena, we can deduce and create a complete 

database with many examples for machine learning 

algorithms that can produce accurate predictions – in our 

case, pedestrian traffic flow. Accordingly, we will 

produce the new missing data that will be used to enrich 

the mapping database, and in turn, will greatly contribute 

to the reliability of our route calculation algorithm. 

2. Related Work 

As part of the rapid progress in the development of 

satellite navigation systems, digital maps and 

smartphones, developments related to blind pedestrians 

technological solutions have been accelerated. Alongside, 

the benefits of OSM have encouraged researchers to use 

this mapping infrastructure for navigation solutions for 

this community. Solutions can be classified into three 

groups: 

1) Enhancing supplementary senses. Studies have 

attempted to convert existing data into maps for tactile or 

hearing information. (Watanabe et al. 2014) showed how 

OSM can be used to create physical tactile maps. Like 

Braille, the researchers defined a set of signs that allows 

the users to understand from touch what are the spatial 

objects they are touching. For example, a line consisting 

of dots of 3 mm at a distance of 5 mm indicates a road 

with an accessible sidewalk. In contrast, with the decline 

in the number of blind people who are currently writing 

Braille, and in parallel to the increase in their use of 

computers, other studies are aimed at both sensory and 

auditory channels for the accessibility of data existing on 

maps. “Open Touch / Sound Maps” is an example of an 

application that allows users to move around in a virtual 

space, and get information based on where they are. The 

information is obtained from OSM and is transmitted to 

the user with voice messages and sensory aids (Kaklanis 

and Votis, 2011). 

2) Navigation applications. Various navigation 

applications, using a variety of sensors, identify the users’ 

location, sending a voice message about their location, 

POIs in their vicinity, and provides directions to the 

destination (Guy and Truong, 2012). Some applications 

even send warning messages if the users are detected off 

track, or when obstacles are identified nearby so that the 

environment becomes more familiar and safer (Dornhofer, 

et al. 2014). In addition, the smart device can be left in the 

pocket, allowing the users to use their hands to hold aids 

(guide stick, or guide dog's strap) as they navigate (Guy 

and Truong, 2012). The main problem with these 

solutions is that they use the shortest route that is not 

always accessible to blind pedestrians. These routes might 

include crossing roads without pedestrian crossing, 

walking on roads without sidewalks, walking on crowded 

streets or streets having many obstacles (if at any time, the 

app sends a warning, it would become a nuisance rather 

than an aid tool). 

3)     Route calculation algorithms. For blind pedestrians, 

the shortest or fastest route from one place to another is 

not necessarily the preferred route, but rather a route that 

is more accessible, safe and simple to navigate. A safe 

route should include walking on sidewalks only, crossing 

roads on pedestrian crossings, and avoiding routes with 

barriers, obstacles and crowded places (Cohen, 2017). An 

accessible route refers to a route in which accessibility 

measures have been established specifically for blind 

pedestrians, such as: tactile paving, accessible pedestrian 

signals and accessible bus stations (Chandler and 

Worsfold, 2013). A simple route refers to the geometric 

complexity of the route, as well as the landmarks along 

the route that can be identified by their distinctive smell 

and noise (Branham et al. 2016). In many parts of the 

world, OSM provides some necessary data for blind 

pedestrians that do not exist in other mapping 

infrastructures, thus serving as a comprehensive and up to 

date database. A useful implementation of these 

algorithms, based on OSM data, depends greatly on the 

quality and quantity of the available data for the selected 

area. It turns out that only a small number of cities collect 

these critical data, including pedestrian paths, sidewalks, 

and crossings. But more than that, information for time-

based phenomena, such as pedestrians traffic flow 

throughout the day, does not exist at all, which is critical 

to the practicality of such solutions (Timothy et al. 2014). 

 Today, time-dependent phenomena, such as 

pedestrian traffic flow at a given time, are not presented 

in most mapping databases, as with OSM. A study 

conducted in Frankfurt, Germany, demonstrated how to 

build a simulation that predicts the traffic flow of vehicles 

and pedestrians, based on existing OSM data with an 
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emphasis on the urban environment (Dallmeyer et al. 

2014). This study used machine learning tools to build the 

simulation, while examining three existing learning 

methods - supervised learning, unsupervised learning and 

reinforcement learning. The simulation allows adding 

more GIS layers and the correlation among them. For 

example, if one adds a precipitation and elevation layers, 

the simulation will be able to predict the extent to which 

these data affect the pedestrian traffic in the area. 

However, the learning classifier being used to predict 

pedestrian and car flow was trained only with vehicles 

data. Additionally, the simulation was based only on 

features like velocity, which are not retrievable from 

OSM. 

(Codeca et al. 2017) defined general requirements to 

model pedestrian traffic flow that can be used in different 

study cases (for example, a typical European city includes 

a city center surrounded by neighborhoods connected to 

the city center by regional roads). However, not all the 

information necessary for these requirements are found in 

OSM, but only in other sources of information (e.g., 

demographic information of the city).  

The use of machine learning algorithms in GIS handles 

mainly the inclusion of maps, building extraction, road 

identification, classification of land cover from aerial 

photographs and analysis of satellite images (Zenasni et 

al. 2018). Several studies have used existing OSM data to 

complete missing OSM data. For example, (Jilani et al. 

2014) suggested to complete missing data related to the 

road type (e.g., primary, secondary, pedestrian) by using 

machine learning algorithms that will analyse the areas in 

which this information exists, and from which the spatial 

and topological features of the road type will be studied. 

Several machine learning algorithms were examined, and 

only the best results for the test data were applied to the 

areas where these data were missing. (Li et al. 2014) tried 

to automatically identify the number of road lanes in 

several cities in Germany, by using a polygon-based 

method that outlines roads to construct a set of features 

that are related to the road type, and then a Support Vector 

Machine (SVM) algorithm is applied. ( Jamal  et al. 2013) 

suggested using a decision tree algorithm for classifying 

land use in OSM. According to this method, the spatial 

features of the different landscape pattern were studied, 

and on this basis the decision tree was built. The results 

obtained from the model were compared to the 

classification obtained from an authorized database and 

received a classification accuracy of 91%. The Random 

Forest algorithm is an advanced version of the decision 

tree algorithm, where researchers showed how data in 

OSM can be completed for certain tags based on data 

existing in other elements (Funke and Storandt, 2017). For 

example, if the value of the key "name" of the element is 

“Cut & Colour”, then this is probably a hairdresser, so the 

value of the key "amenity" is likely to be "hairdresser". 

3. Methodology 

3.1 ANN model 

ANNs are designed to compute models that mimic the 

biological neural networks by processing complex data 

inputs and learning to perform tasks by considering 

examples. An ANN is based on a collection of connected 

units, or nodes, called artificial neurons. The model 

receives input values in respect to each feature in the first 

layer of neurons, and then processes them through a series 

of non-linear functions that receive various weights and 

biases values (in the edges that connect the hidden layers) 

to predict the right label (by selecting the closest value to 

1 from all the neuron in the output layer); in our case - 

determining pedestrian flow levels. 

Training the ANN model is executed with the parameters 

that gain high accuracy. The parameters that mostly affect 

the accuracy are: 1) Activation function - the function to 

calculate the value of each neuron in the hidden layers 

(e.g., ‘logistic’ and ‘ rectifier’); 2) Hidden layer size - the 

number of hidden layers and the number of neurons in 

each hidden layer; 3) Number of epochs – the selected 

maximum number of iterations in the optimization 

process; 4) Solver - the selected optimizing method for 

weights, such as ‘sgd’ and ‘adam’; 5) Learning rate – 

determine the changing rate for the updating weights and 

biases. 

The evaluation comprises of two parts. A preliminary 

evaluation for the accuracy, which is achieved using two 

metrics: 1) Score, which examines whether the calculated 

ANN model accurately predicts the label (in our case - 

flow level) of the training samples; 2) Loss function value, 

which is used to measure the differences between the 

predicted and the actual values. The closer the value is to 

zero, the higher the accuracy of the model. The second, 

and more significant part, is the comparison between the 

predicted labels to the actual labels of the test samples; 

usually, of all samples, 20% are used as the testing set. 

3.2 Features Selection 

Environmental features affect the pedestrian traffic flow, 

whereas some can be extracted - or calculated – from the 

OSM elements and tags. (Qin, 2016) reviews various 

possible features that affect the pedestrian traffic flow. 

These features relate to the connectivity of the street 

network, the semantic attributes of the neighborhoods 

(e.g., safety, type, density) and the streets (i.e., land use), 

and the environmental features (i.e. amenities, aesthetics). 

Additional features that were found to have an effect are: 

tourist sites and public transportation stations (Omer et al. 

2015). 

To quantitively evaluate the connectivity features values, 

we have decided to use space syntax metrics, which are 

retrieved by extracting the highway elements in OSM that 

present the road network. With space syntax, the 

correlation between the spatial configuration of the urban 

street network and the social, economic and 

environmental phenomena, such as traffic flow, is 

analyzed. Space syntax has a series of quantitative 

measures that examine the street network, where (Hillier, 
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1996) and (Peponis and Wineman, 2002) proved that the 

two main measures (indices) that show the most influence 

on pedestrian traffic flow are Integration (INT) and 

Choice (CH). The Integration index examines the number 

of intersections that must be traversed in the shortest path 

to reach each segment in the network from the examined 

street segment. Segments with a relatively small number 

of intersections needed to reach all the streets in the 

network are considered as connected streets, and hence 

have a more central meaning in the street network. The 

Choice index examines for each street segment how many 

times will it be used as part of the route in the shortest 

route between all street segments. A high Choice value 

indicates high connectivity. Accordingly, the more 

connected the street is, the more popular it is among 

pedestrians. 

Semantic attributes of neighborhoods features do not exist 

in OSM. But because these features are considered to have 

a lesser impact on the traffic flow levels, in addition to the 

fact that they have a more global effect rather than on 

specific streets, they were not taken into account at this 

stage of the study. 

Land Use features are largely missing in OSM, but other 

features that do exist in the vicinity can have an indication 

regarding the land use. Shops, for example, indicate on a 

commercial district, as offices on a business district. Shop 

and office data can be extracted from points or polygons 

elements, where the value in key “office” or “shop” is not 

empty. 

The relevant environmental features were also extracted 

from OSM by looking at the elements’ tags, namely: 1) 

Tourism features, which relate to landmarks and sites that 

attract tourists (e.g., museums), and also tourism-related 

facilities (e.g., hotels); 2) Amenity features, which cover 

an assortment of community facilities, such as banks and 

post offices; 3) Aesthetic features, which relate to places 

like parks and gardens; and, 4) Transportation features, 

presenting bus and train stations. Another feature that is 

taken into account relates to time, which examines the 

traffic flow according to the hour-of-day. 

The features retrieved from the OSM vector data were 

split into two groups derived from their geometric 

representation – points and polygons. One single store, for 

instance, that is represented as a point element, has a 

different effect on the traffic flow as a shopping center, 

which is represented as a polygon element. 

Figure 1 summarizes the 15 features that were extracted - 

or calculated - from OSM, found to have an effect on the 

pedestrian traffic flow, and hence are added to the ANN 

model.  

 
Figure 1. The features defined as affecting the pedestrian traffic 

flow. 

3.3 OSM data processing 

The processing stages detailed here are developed to run 

automatically on the OSM data, adding the relevant 

feature instances to the street network in the ANN model. 

The streets network and feature instances are downloaded 

from OSM using the QuickOSM plugin in QGIS 3 

software. The plugin allows downloading data from a 

selected area in OSM according to a defined spatial and 

textual query. An example of a query is depicted in Figure 

2, where the plugin downloads all the points for a defined 

area where the value in the "highway" key is "bus_stop", 

that is, geographical elements in OSM that represent bus 

stops. 

 

 
Figure 2. An example of a query in the QuickOSM plugin, which 

results in the download of bus stops elements from OSM that 

exists in the extent of the required area and convert them to a 

shape file. 

Three toolboxes containing several ArcGIS Model 

Builders scripts, depicted in Figure 3, were designed and 

developed to implement three steps. The first step is to sort 

the downloaded elements into the appropriate features 

defined in section 3.2. The models in this step sort the 

point and polygon elements into different feature classes 

by looking at the elements’ tags. For example, all the point 

elements whose value in the office key is not empty are 

considered as an office feature. 

 
Figure 3. The ArcGIS Model Builder scripts designed and 

developed to find the number of instances each road segment 

have from the various features, and whether the segment crosses 

or is contained in the instance of a polygon. 
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In the second step, each street segment is examined with 

respect to the environmental features and the spatial 

configuration of the street network, following this set of 

rules: 

• Point type features – for each feature the toolbox 

counts the number of features at a distance of 20 

meters (for example, how many shops exists within a 

distance of 20 meters from a certain street segment). 

• Polygon type features – for each feature the toolbox 

examines whether the feature crosses or contains the 

street segment. 

• Space syntax metrics – the Graph Analysis plugin in 

QGIS 2 is used to calculate the CH and INT values. 

The plugin sends the network to depthmapXnet, a 

multi-platform software, to perform a set of spatial 

network analyses designed to understand social 

processes within the built environment, which 

performs the calculations, and returns the CH and INT 

metrics values. 

The third step in the data processing is normalization. 

ANN works best when the values’ range is not too large. 

Accordingly, for each feature, the normalization is made 

as follows: 1) CH and INT metrics - normalization was 

performed in relation to the maximum value, so that the 

range of values is between 0 and 1; 2) Point type feature - 

the number of feature instances was divided by the 

segment length; 3) Polygon type feature - normalization is 

not required, since the values are 1 if the feature crosses 

or contains the segment, and 0 if not. 

3.4 ANN model labels 

The study of (Helbing, 2009) defined five traffic flow 

levels for pedestrians, depicted in Figure 4. In an interview 

we have conducted with an Orientation and Mobility 

counselor working with pedestrians having visual 

impairments, we learned that defining the traffic flow 

levels for blind pedestrians is different - both in scale 

(level) and meaning. Accordingly, the traffic flow levels 

are divided into three levels: 1) pedestrians walking within 

a distance of more than 15 meters from one another is 

considered as a low-level, and is not recommended for 

blind pedestrians, mainly in terms of assistance and 

orientation; 2) pedestrians walking within a distance of 1  

to 15 meters from one another is considered as a medium- 

level, which is the optimal level for blind pedestrians, 

assuring them to move easily in terms of orientation, and 

safely in terms of assistance in case required; 3) 

pedestrians walking within a  distance of less than 1 meter 

is considered a high-level, and is inconvenient for blind 

pedestrians, not allowing them to move easily. 

Consequently, the ANN model labels consist of three 

traffic flow levels: l for low traffic flow, 2 for medium 

traffic flow, and 3 for high traffic flow. 

 
Figure 4. The density levels in units per square meter per person 

according to (Helbing, 2009). 

4. Experiments and Results 

4.1 Experiment area 

Tel Aviv center, depicted in Figure 5, is chosen as the 

experiment area because in a relatively small extent there 

exists a good variety of street types, which are derived 

from the various districts, e.g., business, commercial and 

entertainment. The streets in orange color in Figure 5. are 

the streets selected as the training samples, since they are 

comprised of a wide variety of streets with different traffic 

flow levels, thus should serve as a good input for 

implementing the algorithm and developing the ANN 

model. For example, the Carmel Street (depicted as a 

yellow rectangle), which is the main street in the Carmel 

Market, is known to be a very crowded street, compared 

to Ezra Scribe Street (depicted as a blue rectangle) - and 

others in the vicinity - that are known to be mostly empty 

streets. 

 
Figure 5. The experiment area, streets in orange are streets from 

which data were collected (field survey). 

4.2 Collecting the training data  

The training samples - the number of pedestrians on a 

given street segment – was collected on three separate 

days between 8:30 am and 7:00 pm. 60 street segments 

were chosen, which were measured between one to three 

times a day at different hours. 80% of the samples serve 
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as input in the ANN model (training data), and the 

remaining 20% are intended to test the model (testing 

data). The samples collection was performed using the 

ArcGIS collector application, which allows editing GIS 

layers on the fly using a smartphone. 

Three steps precede the training of the ANN algorithm: 

• OSM data processing – the features instances and 

street network within the experiment extent are 

downloaded from OSM and processed, as described 

in section 3.3. In the experiment area no polygon 

feature instances of Tourism, Office and 

Transportation were found, hence excluded from the 

features list. 

• Time – conversion of time from date format to 

decimal number format and normalizing it to a range 

of values between 0 and 24 using the formula in 

Equation 1. It should be noted that we analyze and 

evaluate our methodology with respect to working 

days only. 

minutes
hours

60decimal_time
24

+

=  (1) 

• Flow level index – for each sample (i.e., a measured 

street segment), its length was divided by the number 

of pedestrians, and the label was determined 

according to the three given value in Section 3.3, i.e., 

Label 1, Label 2, and Label 3. 

At the end of this stage, each sample receives a value in 

respect to each feature, and the intensity of the measured 

phenomenon (i.e., label) is the flow level index. 

4.3 Training the ANN model 

The 125 samples collected in the survey were divided 

randomly into two groups: 100 samples are referred to as 

training data for the ANN algorithm, and the remaining 25 

are test samples. The model was built and run using the 

scikit-learn machine learning package in python. 

Preliminary evaluation of the training data showed high 

accuracy, with a value of 1 for score metric, meaning that 

the ANN model accurately predicts all the training sample 

labels, and a value of 0.0003 for the loss function metric, 

showing a good matching between the predicted and the 

true values. 

Training the ANN model was executed with the 

parameters that gained the highest accuracy for the loss 

function and score values: 1) Activation function - 

Logistic activation type; 2) Hidden layer size - 3 hidden 

layers are selected: the first with 39 neurons, the second 

with 40 neurons, and the third with 6 neurons; 3) Number 

of epochs  – the selected maximum number of iterations 

in the optimization process is 10000; 5) Solver - the 

selected optimizing method for weights is the quasi-

Newton method; 5) Learning rate – adaptable learning rate 

rather than constant. 

4.4  Evaluation of the ANN model 

After the training stage is finalized, the ANN model is 

ready for testing and evaluation. A confusion matrix, 

which shows the number of test examples that were 

correctly - and incorrectly - classified, was used to 

evaluate the results. Figure 6 depicts the confusion matrix 

obtained for the testing samples. 90% of the testing 

samples belonging to level 1 (low flow-level) were 

classified correctly, and 93% of the testing samples 

belonging to level 2 (medium flow-level) were classified 

correctly. The only existing example for density level 3 

(high flow-level) was incorrectly classified, mainly since 

only two samples exists, requiring additional training data 

of this flow-level. A total of 88% (22 out of 25) of the 

testing samples were correctly classified - a relatively high 

percentage, indicating an accurate and reliable ANN 

model. 

 
Figure 6. The confusion matrix of the expected flow levels in the 

ANN model, compared to the actual flow levels observed in the 

field. 

According to (McCahill et al.  2008), the logarithm of the 

values obtained from the space syntax metrics should be 

used to obtain a more reliable result of the model. The 

algorithm runs with several different neurons in each layer 

relative to the previous state (hidden layer size = 

[38,42,16]). The results showed a lower accuracy relative 

to the previous results obtained - 80% of the testing 

samples were classified correctly. On the other hand, the 

algorithm succeeded in correctly classifying all the 

samples that belong to the medium flow-level. A possible 

explanation might be that more training samples (as in the 

case of level 2 - 57 samples) lead to more accurate results 

when the logarithm space syntax metrics values are used. 

Another data collection with new streets in the experiment 

area was made, to compare the existing ANN model on a 

different data sample. Out of the 18 new street segments 

surveyed, 16 were correctly predicted. Meaning that close 

to 89% of the streets were correctly predicted in terms of 

pedestrian traffic flow, a similar prediction value obtained 

for the first testing sample (88%). 

Table 1 presents the mean weights of the features (i.e., the 

input) of the first hidden layer. Examining these weight 

values, we can conclude that the values of the space syntax 

indices (INT, CH) have the most impact on the ANN 

model. This conclusion is consistent with the insights 

made in previous studies that investigated this issue 

(Omer et al., 2015). Time also has a relatively large effect 

when compared to the other features. In contrast, the 

aesthetics feature has almost no effect on the model. 

Predicted label 
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Table 1. The effect (weight) of the features on the neurons 

network in the first hidden layer. 

Since micro-mapping (mapping of small geographic 

elements) is not always complete in OSM2, the ANN 

model was also implemented with the geometrical 

attributes of the road network (i.e., INT and CH features) 

and the time feature. This implementation is designed to 

evaluate the reliability of the ANN model in predicting 

pedestrian traffic flow in cases where certain features are 

missing from the OSM database. The result showed an 

accuracy of 80%, which is still high, compared to 88% 

when the micro-mapping OSM features were used. 

4.5 Evaluation of the overall results 

The model was applied for all the streets in the experiment 

area (Figure 5), where the traffic flow levels were not 

measured (sampled). Figure 7 depicts the statistics of all 

street segments according to the different pedestrian 

traffic flow levels and the different time-of-day. It appears 

that the model succeeds in predicting the different flow-

levels for Tel-Aviv. The model predicts that during the 

morning hours, only a small number of streets, which are 

located nearby business districts, main transportation 

stations, and schools, are crowded, while the majority are 

predicted with a low flow level, pointing to the fact that in 

this time-of-day it is less preferable for blind pedestrians 

to navigate the city, since most streets are either empty or 

crowded. The largest number of streets with a high flow-

level is obtained around noon, probably people heading 

out to eat and shop where all POIs are open. The afternoon 

hours are the best hours for blind pedestrians to walk, 

since the flow-level is optimal - although many people are 

strolling the streets, the pedestrian traffic spreads 

relatively uniformly across the city because this is no 

longer a working time for all, so people move across 

different street types, not concentrating in small areas. In 

the evening, the dispersion is similar to that of the morning 

hours. 

                                                           
2 OSM wiki 

 
Figure 7. The number of street segments per flow-levels 

throughout the day for the entire experiment area. 

5. Conclusions 

The ANN model predicts the different pedestrian traffic 

flow-levels with an accuracy of 90%. These results are 

very promising since the ANN model’s prediction relies 

mainly on the geometrical attributes of the road network, 

which are mostly accurate and up-to-date in the majority 

of the cities mapped in OSM; this is in contrast to the point 

elements, such as shops, which are not always complete 

and up-to-date (Zhang and Malczewski, 2018). This 

indicates that even if some OSM data is missing, the ANN 

model should still be capable of providing reliable results 

with adequate certainty. Time also has a large impact, and 

it was presented that the model predicted logical flow-

level estimations for the different time-of-day in the 

examined area. 

To fully evaluate the current ANN model and prove its 

scalability, our main aim is to conduct a larger scale and 

comprehensive survey, which will include other locations 

(cities), containing all possible flow-levels and feature 

types. This will be achieved either by additional extensive 

on-site observations, or by data received from external 

sources (such as cell-phone signatures). Some of the 

features have a lesser effect on the ANN model due to 

missing OSM data, such that further analysis will be made 

to evaluate this effect on the ANN model’s prediction rate. 

Moreover, ways to enrich OSM with missing data will be 

made, which can further contribute to the existing ANN 

model robustness. Alternative mapping infrastructures 

(e.g., government), other than OSM, will also be 

examined. 

Overall, we believe that this is a first step towards the 

enrichment of mapping infrastructures that can be used for 

various tailored navigation purposes, such as the route 

calculation for blind pedestrians suggested here. Not only 

does static missing data, such as sidewalks and crossings, 

can be generated, but also temporal data that was shown 

to have a critical effect on the practicality of the solution. 

Once these are achieved, the route calculation algorithm 

for blind pedestrians will produce safer and more 

accessible and navigable routes, contributing to this 

community by assisting them to walk more confidently in 

urban environments. 
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