
Abstract: Modern map visualizations are built using data structures for storing tile images, while their main
concerns are to maximize efficiency and usability. The core functionality of a web tiled map management
system is to provide tile images to the end user; several tiles combined construe the web map. To achieve
this, several data structures are showcased and analyzed. Specifically, this paper focuses on the
SimpleFormat, which stores the tiles directly on the file system; the ImageBlock, which divides each tile
folder (a folder where the tile images are stored) into subfolders that contain multiple tiles prior to storing
the tiles on the file system; the LevelFilesSet, a data structure that creates dedicated Random-Access files,
wherein the tile dataset is first stored and then parsed in files to retrieve the tile images; and, finally, the
LevelFilesBlock, a hybrid data structure which combines ImageBlock and LevelFilesSet data structures.
This work signifies the first time this hybrid approach has been implemented and applied in a web tiled
map context. The JDBC API was used for integrating with the PostgreSQL database. This database was
then used to conduct cross-testing amongst the data structures. Subsequently, several benchmark tests on
local and cloud environments are developed anew and assessed under different system configurations to
compare the data structures and provide a thorough analysis of their efficiency. These benchmarks
showcased the efficiency of LevelFilesSet, which retrieved tiles up to 3.3 times faster than the other data
structures. Peripheral features and principles of implementing scalable web tiled map management
systems among different software architectures and system configurations are analyzed and discussed.

Keywords: Web Tiled Map Management System, Mapping, GIS, Data Structure, Benchmarks, Google Cloud

1. Introduction

Web Tiled Map Management Systems have been
developed and used for more than a decade. Popular
vendors, such as Google, Microsoft, and ESRI, have been
developing large scale mapping systems to visualize the
world. Despite public knowledge of the scaling of these
companies and their user base, very little is known about
the architecture underlining these projects. Consequently,
researching the efficiency and applicability of storing and
retrieving tiles remains open to investigation. Anchoring
the work on the most widely used techniques, the three
most common solutions for tile management were
implemented. These solutions include techniques which
store the files directly to the File System or use the
databases, as Sample and Ioup (2010) have mentioned.
This paper presents the analysis of two file system
solutions, the SimpleFormat and the ImageBlock, along
with a data structure, named LevelFilesSet, which stores
the tiles into Random-Access files.
 File systems are complex in nature and have
significant differences (e.g., NTFS and ExFAT)

(Microsoft, 2013). In implementing a system using a file
system solution, there are decisions that will decrease its
scalability. As a prime example, the system will be
compatible with a specific operating system and its
accompanying file system. This inflexibility denies the
freedom of cross-platform applicability when using a
single solution. In addition, file system-based solutions
are complex, time consuming, and they significantly
decrease the system’s maintainability. In contrast, the
LevelFilesSet data structure, is not tied to any operating
or file system. Instead, the LevelFilesSet improves
performance and accessibility for the developer adopting
the solution. This study predominantly attempts to
determine which data structure provides the best results
for accessing and handling a tile dataset. On a second
level of analysis, the study investigates whether the data
structure is flexible and scalable across several systems as
well as easy-to-use for the developers who adopt the
solution. The objectives of this study are:

 To adopt an existing data structuring for managing a
tile dataset, named LevelFilesSet.

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

LevelFilesSet: An efficient Data Structure for Scalable Web
Tiled Map Management Systems

Menelaos Kotsollaris a *, William Liu b, Emmanuel Stefanakis c, Yun Zhang d

University of New Brunswick, Canada
a mkotsoll@unb.ca, b william.liu@unb.ca, c estef@unb.ca, d yunzhang@unb.ca

* Corresponding author

 2 of 10

 To compare the LevelFilesSet with two file system
based solutions, the SimpleFormat and the
ImageBlock.

 To provide an efficient data structure that can be
scaled across different systems.

 This paper is organized as follows: Section 2
describes the methodology applied for the design and
implementation of the data structures and highlights the
use-cases of the web tiled map system; section 3 presents
and analyzes the results from the local benchmarks and
section 4 analyzes the cloud benchmarks. In the end,
section 5 concludes and mentions further topics for future
research.

2. Methodology

As the Figure 1 shows, there are several ways of storing
and retrieving the tile images:

Figure 1 LevelFilesSet, Database, SimpleFormat and

ImageBlock

 The options for storing and retrieving are
SimpleFormat, ImageBlock and LevelFilesSet. This
section describes and analyzes the advantages and
drawbacks of these data structures.

2.1 Tiling Scheme and Zoom levels

 The tiles are stored in folders, referred to as zoom
levels. Each zoom level is expected to contain 4k tile
images, where k represents the folder number. For
instance, the first zoom level will contain 4 images. As
the zoom level increases, each tile is divided into 4 sub-
tiles. The maximum number of columns and rows for
each zoom level is 2n – 1, where n represents the number
of zoom levels. For instance, in zoom level 5, the number
of columns and rows will range between 0 and 31 (e.g.,
5_0_0.jpg to 5_31_31.jpg; Z_X_Y.jpg, where Z
represents the zoom level, X the column, and Y the row).
In this research, tiles have the size of 256 pixels and are
classified by their zoom level, column and row of the 2-
dimensional map grid (Figure 2).

Figure 2 Tiling scheme for zoom level 1

 The logical tile scheme is the foundational element of
a web tiled map management system. In this research,
tiles have the size of 256 pixels and are classified by their
zoom level, column, and row of the 2-dimensional map
grid. The logical scheme consists of mapping the address
of the tile images to geospatial coordinates of the
geographical area that the image covers. Google, Bing
and Yahoo! Maps all use the tiling scheme mentioned in
this paper. This tile scheme renders computing the
addresses of the tiles a trivial procedure and it is preferred
over the others because of its simplicity and easiness to
implement. As explained in (MicroImages, 2010), the
Google Maps tile dataset structure is stored in each
subdirectory as described below. Every tile is aligned on
a fixed grid of Spherical Web Mercator projection
(Stefanakis, 2014). This way, Google Maps can quickly
and efficiently load millions of tiles. This hierarchical tile
structure ensures that the tile dataset with the maximum
possible resolution will never be able to exceed the
maximum number of tiles or directories that the web tiled
map management system can store, thus rendering it
efficient and scalable across different systems.

2.2 SimpleFormat

 By implementing this data structure, the tiles are
directly stored into folders segregated by zoom level. One
of the advantages of this solution is the ease of its
implementation and usage. However, this comes with
drawbacks, including deciding which operating system
and file system should host the LevelFilesSet.
Consequently, a benchmarking across all the available
file systems (e.g., NTFS, ExFAT, FAT32) must be
performed to verify the best performance. This would
certainly be a time-consuming practice. Moreover, this
solution restricts the system regarding which operating
and file systems can be used. For instance, if NTFS is

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 3 of 10

proven to be the best performing file system, then this
system will not be supported by any operating systems
other than Windows. The ideal system would operate
optimally regardless of the underlying operating system
(Zhang et al, 2008). The main problem with using file
system-based solutions is that each file system is
operating system-specific. Thus, the very nature of a file
system renders it inapplicable in the context of a multi-
modal solution scaling across different operating systems.

2.3 ImageBlock

 Similarly to the SimpleFormat, ImageBlock structure
operates in the File System where the tiles are stored in
folders. In this case, however, each folder has an upper
limit on the number of tiled images that can be
accommodated. The maximum number of tiles that each
folder can contain is 1024, so after the 6th zoom level, the
folders will contain child-folders. For example, the 6th
folder will contain 4 folders as depicted in Figure in
Figure 3:

Figure 3 The ImageBlock format

 For instance, tile 6_0_34 will be classified into
6_0_32 folder because it contains tiles with columns
ranging from 1 and 31 and rows 32 and 63. As in the tile
naming, the first number of the folder name represents
the level, the second number represents the column, and
the third represents the row of the tiles. This solution has
the advantage of distributing the tiles in a more elegant
way rather than lumping them under 1 folder, like
SimpleFormat.

2.4 Databases

 In the database solution, all the tiles are stored in
tables according to each zoom
level. The structure in which the tiles are stored is similar
to either SimpleFormat or ImageBlock. Although
databases offer multiple APIs that have been tested and
used by several developers, their performance for storing
and retrieving tiles is the worst out of all the alternative
solutions (Sears et al. 2007). The benefit of using the
database solution is that they are very robust and scalable;
however, when performance is the core factor of decision
making, as in this case, this solution proves to be
insufficient.

Figure 4 The database schema following the

SimpleFormat structure

 The database schema showcased in Figure 4 follows
the SimpleFormat structure. Each zoom level is stored as
a table and each tile contains several attributes (e.g.,
tile_id, tile_source and so on). The tiles are saved as
BLOB data type.
 The databases can inherit different schemas. For
instance, the ImageBlock structure could be used for the
structure of the tables. In this research, the
SimpleFormat’s schema is used for testing purposes.
Recently Mapbox, has came up with a format similar to
those of the one described above, named MBTile format.
The MBTile format (MapBox, 2010) uses a SQLite
database to store tiles in one single table (Table Tiles)
and has attributes similar to the database described above
(column, row, BLOB, and so on). Similarly to the file
system based solutions, databases bring a lot of
unnecessary features that introduce significant overhead
to the system. A tile storage system will not require the
rich number of APIs featured in the database; instead
only a handful of the APIs are necessary and thus
databases are not able to efficiently retrieve tile images.
 Databases are designed to manipulate a structured
volume of data, such as characters and numbers. A tile
storage system has little need for queries on structured
data. However commercial systems, such as such as
MapBox, use databases instead of other solutions. If the
tile application required frequent update of tile images
(from the user side), then the database would offer
straightforward functionalities that would render tile
storage and retrieval a lot more straightforward and less
time consuming. Hybrid approaches, such as file system
with database solutions would also be an option. In this
research, Postgres 9.3, an open-source database which
provides multiple APIs and further geospatial tools, is
chosen for benchmark purposes. The Java framework
provides the JDBC API (see following section), which
allows data access from any relational database.

2.5 LevelFilesSet

 Instead of accessing the tile files by using the File
System’s inner functions, two files are created: The
Lookup file and the TileDataset file. Each time a tile is
requested, the Lookup file provides pointers that point to
locations in the TileData file (Barish, et al, 2000). The
TileData file holds the information about all the tiles in
each zoom level (Figure 5).

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 4 of 10

Figure 5 The architecture of LevelFilesSet

The lookup file contains 2 variables:
CursorPointer (8 bytes): Represents a pointer to the Data
File.
SizePointer (4 bytes): Represents the size of the tile.
 Initially, the LevelFilesSet Dataset is generated by
copying the bytes of the tile files on the LevelFilesSet per
zoom level. The way the tiles are stored is based on the
following formula:

2 ∗ ∗
 (1)
where:
position: the position at the Lookup file
level: the zoom level of the tile
column: the column of the tile
row: the row of the tile
byteLength: the length of the CursorPointer plus the
SizePointer.

 The Lookup file can be extremely large on the high
zoom levels (e.g., zoom level 14 or higher). The
maximum size of the TileData file can be 264-1 bytes;
this number ensures that the data structure will be able to
support higher zoom levels that contain billions of images.
For example, the user wants to retrieve the tile on the 3rd
zoom level, 2nd column and 1st row, based on equation
(1), where position=204. This means that to retrieve the
tile, the LookupFile must be parsed on the 204th byte of
the LookupFile. The first 8 bytes of that position (bytes
204 until 211) will contain the pointer of the TileData file
and the next 4 bytes (bytes 212 until 215) will contain the
size of the tile. After retrieving the CursorPointer and
SizePointer, the TileData file is parsed, starting at the
CursorPointer and reading SizePointer bytes.
 Although the implementation of the LevelFilesSet
data structure is complex, the benefits are the following:
a) the system does not rely on the file system for reading
a file
b) retrieval of any tile is achieved in constant time.
 In other words, a file system on top of the existing file
system is created and used for tile retrieval. This data
structure offers the feature of tile generation, which is
based on the pre-existing tiles structured that depends on
the SimpleFormat structure. There are several other

features that could be implemented in the future and
could enrich the functionality of the LevelFilesSet to
support other use cases and scenarios. For instance, one
of these features could be the functionality of adding and
deleting tiles dynamically. Tiled map-based management
systems usually have to update their tiles within a specific
time range. The current state of the data structure allows
tile generation, which means that the LevelFiles have to
re-generate every time a tile is updated. For supporting
this feature, the implementation of the LevelFilesSet
should be upgraded to a more sophisticated version, as
proposed by Sample and Ioup (2010). By storing an extra
file which keeps the pointers of each tile, the
LevelFilesSet can modify (i.e., add or delete) each tile
separately. However, this feature is expected to increase
the memory needs of the systems since additional
pointers must be stored apart from the tile dataset.
Moreover, the performance is expected to decrease since
an additional Seek and Read within the newly added file
will be needed. This upgrade can be seen in the Figure 6.

Figure 6 Version of the LevelFilesSet that allows missing

tile indexes by using the tile stack which indicates the
existing tiles within the system

Figure 7 An example of computing the pointers within

the Lookup File based on the equation (1) to retrieve the
1_1_0.jpg tile

 Overall, the tile retrieval is done in real time; thus, the
complexity of searching the tile is also done in real time.
As showcased in Figure 7, since the pointers are stored in
the Lookup file, by reading the tile starting point in the
TileDataset file and the expected size of the tile, the tile
can be retrieved without linearly examining other tiles.
The Random-Access files allow such functionality since
the information is stored in raw binary data. However,
this functionality comes with two drawbacks:

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 5 of 10

1. The implementation of the LevelFilesSet is
complicated and requires careful design patterns while
developing. Similarly to all data structures, if the
design patterns are not optimal, the results will follow
suit.

2. The memory complexity increases since the Lookup
file requires space for storing the pointers. The
alternative proposed techniques do not require this
additional space.

 If implemented correctly, the LevelFilesSet will be
optimal and, as presented in the previous section, optimal
results are expected for its performance.

2.6 The LevelFilesBlock data structure

 The core ability of storing and retrieving tiles makes
LevelFilesSet the most suitable and efficient solution.
However, as previously stressed, when faced with large
zoom levels an architecture must be designed to support
the LevelFilesSet across multiple storage disks. The
Figure 8 provide a conservative estimation, if the average
tile size is 4KB, of the expected size for each zoom level.

Figure 8 Total expected size of tiles for each zoom level

 For instance, for the 22nd zoom level, if the average
size of an image is 4KB, then the total size of the tiles is
expected to be 65.6 PB; which means that the TileDataset
file will have an equal size. Inarguably, storing this large
number of information into one single file proves to be
impossible and thus non-scalable. The need to distribute
tiles across multiple storage systems becomes vital and
the LevelFilesSet, in its simple form, does not fulfil that
requirement. Instead, a hybrid approach, based on the
benchmarking scenarios and scalability concerns, can be
created, as illustrated in Figure 9.

Figure 9 The LevelFilesBlock - A hybrid approach based

on the LevelFilesSet and the ImageBlock

 LevelFilesBlock combines LevelFilesSet with
ImageBlock. It takes advantage of the speed superiority
of LevelFilesSet and the elegance of ImageBlock, which
together can distribute the tiles across different storage
systems. For zoom levels 0 to 5, this structure follows
SimpleFormat’s (and ImageBlock’s) format. For the
zoom levels 6 to 11, the LevelFilesSet format is applied.
For the upper zoom levels, ImageBlock’s structure is
applied with the major difference being that instead of tile
images, LevelFilesSet is used per subdirectory. The logic
behind this approach is to take advantage of
LevelFilesSet performance superiority and ImageBlock’s
sophistication in regard to scalability. A major factor of
this approach is limiting the average size of the image.
The goal of each LevelFilesSet within each subdirectory
is not to surpass 64GB. This number (64GB) is
empirically extracted for each application and is
depended on the average system storage capacity. The
goal of selecting a fair constant is to re-ensure that the
system will be able to handle any insertion or deletion
within a sub-directory. For instance, if the system has
multiple storage systems of 1TB capacity, then the
constant can be set on 64GB (16% of the system’s total
size). On the other hand, increasing the sub-directories
leads to more demands on the system. Based on the latest
concern, ImageBlock’s tile-limit number can be increased.
For example, if the limit is set to 1 million, then, since the
average size of each image is 4KB, the expected size of
the total images will be approximately 1GB. The average
image size may be larger than 4KB. That is, the image
size depends on the category of the tiled map
management system and its purpose (e.g., high-resolution
tiled map management system, and so on). In the end, the
developer must take inconsideration the following
the average tile size within each zoom level
the number of the tiles within each sub-directory
the maximum capacity of the storage system
 By using LevelFilesBlock, the tiles can be distributed
across different storage systems in an efficient and
modifiable way and thus both performance and scalability
concerns can be fulfilled. The developer is expected to
adjust the maximum number of subdirectories based on
the average size of the images.

2.7 The system use case

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 6 of 10

Figure 10 The use case of the system

 Initially, the user (developer) requests certain tiles
from the server (Figure 10). The message is processed
and the server retrieves the tiles by using the
LevelFilesSet data structure. Then, the server responds to
the user by providing the requested images. An important
aspect of this case design is that the library is
encapsulated on the backend server and, no matter which
of the alternative data structures is used, the user will not
have to change actions for each method, as mentioned by
Sears et al. (2007). For this reason, no alternation of the
frontend code is required. Figure 11 contains an example
where the developer requests 2 tiles (7_0_1.jpg and
7_0_2.jpg). The server parses the request and then uses
the LevelFilesSet to retrieve the tiles; subsequently, the
server responds and the developer can retrieve the tile
images. Note that it is the frontend developer’s
responsibility to parse each tile accordingly. In this case,
as it can be observed from the Figure 6, for the jpg
encoding the tiles can be separated by the ASCII prefix
“ˇÿˇ‡”.

Figure 11 Tile retrieval via HTTP response

 The remaining use-cases present the way the
LevelFilesSet is generated and configured to request
multiple tiles per HTTP request.

3. Local Benchmarks

3.1 Methodology

 There were three core phases during which the data
structures were compared. In the first phase, a dataset

with missing tiles was tested to present an initial idea on
how the various solutions perform; a comparison between
the File System (SimpleFormat and ImageBlock),
Databases, and LevelFilesSet. The algorithm’s
pseudocode can be seen in Figure 12.

Figure 12 Pseudo-Code for the retrieval algorithm

 This algorithm measures the average time of tile
retrieval for each zoom level and for each solution
(SimpleFormat, ImageBlock and LevelFilesSet). It reads
through every tile image within each zoom level. Then,
the needed time for reading the tile is added to the
variable which holds the total time duration. In the end,
the computed time is divided by the total number of the
tile images in the zoom level. The output number will
indicate how much time, on average, is needed to read a
tile image from each zoom level. The resulting number is
useful will showcase how the zoom levels (with different
tile numbers stored) perform and how this number effects
the performance of the system.
 The first phase’s benchmark runs under the Macintosh
OS with the Database used being Postgres®. The results
and can be seen in Figure 13.

Figure 13 Graphical Representation of the first

benchmark results

Figure 14 illustrates the total time that is required for all
the tiles to be retrieved.

For Each Level:

Total Avg_Time_Duration = 0;

 For Each Tile:

 Start_Time = Get_Current_Time();

 Read Tile;

 // SimpleFormat, Database, LevelFilesSet

 End_Time += Get_Current_Time()

 Start_Time;

 End For Each;

Avg_Time_Duration = End_Time / #tiles;

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 7 of 10

Figure 14 Total needed time for each tile to be loaded

 The Database, in the 11th zoom level, is 6.2 times
slower than the LevelFilesSet, rendering it insufficient to
store large volumes of tile datasets. Furthermore, the
LevelFilesSet is approximately 33% faster than the
SimpleFormat. While this benchmark provides an initial
proof of concept regarding each solution’s performance,
it does not take in consideration the fact that developers
will request certain parts of the web map each time and
that there will be multiple HTTP requests made on the
server. The second benchmark analyzes the network
performance and monitors certain latencies that would
not be added while testing locally on the system.
 In the third phase, there are 3 individual benchmarks
under which the data structures are compared. It is
important to mention that the purpose of these
benchmarks is to test with all the expected tiles on the
system. The pseudo-code for the algorithm used for the
benchmark tests can be seen in Figure 15.

Figure 15 Pseudocode for the benchmarking scenarios

 The above algorithm selects randomly an area of 10
tiles for each zoom level. Then, an average time variable
is used to estimate the required time that every data
structure. The number of requested tiles increases
sequentially each time (e.g., 1, 2, 3 and so on). In the end,
the average time is computed. To simulate a realistic
benchmarking scenario, 1 to 10 tiles are requested for
each zoom level. The threshold indicates the number of
the tiles that are requested each time. Finally, the average

time is computed and reported. It is significant that, in the
testing dataset, a tile has an approximate size of 4
Kilobytes (KB). Depending on the network traffic, the
developer might want to retrieve more than one tile per
request. This algorithm takes that feature into account and
represents a fair comparison with the number of the
requested tiles varying from 1 to 10. The first test ran on
Macintosh under the ExFAT file system and provided the
following results Figure 16:

Figure 16 Graphical Representation of the first

benchmark results for the zoom levels 5 until 10
(Macintosh, ExFat and SSD)

 As observed, for zoom level 10, it takes an average of
11.9 milliseconds (ms) to retrieve the tiles by using
LevelFilesSet, 19.5 ms for ImageBlock and 19.8 ms for
SimpleFormat. The performance improvement of
LevelFilesSet over SimpleFormat and ImageBlock, in
zoom level 10, is 66%. SimpleFormat and the
ImageBlock have almost identical results.
 The second benchmark ran on Windows (NTFS)
using a Solid-State Drive (SSD). The Windows SSD
memory capacity allowed the test to run until zoom level
11, rather than the 10 levels in the case of the first
benchmark that ran on Macintosh. The results are
reported in Figure 17.

Figure 17 Graphical Representation of the first

benchmark results for the zoom levels 5 until 11
(Windows, NTFS and SSD)

 The performance improvement of LevelFilesSet over
the SimpleFormat and ImageBlock, in the 11th zoom
level, is approximately 323%.

Randomly Select Area (10 tiles);

 For Each Level:

 For (threshold 1: 10): //threshold = requesting tiles number

 Compute LevelFilesSet Performance;

 Compute ImageBlock Performance;

 Compute SimpleFormat Performance;

 End For;

 Compute Average Time();

End For Each;

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 8 of 10

 For the third benchmark test, the same Windows
machine is used, with the difference being that the files
are stored in the Hard Disk Drive (HDD) instead of the
SSD. The HDD capacity allowed the test to run until the
13th zoom level. The results are as follows Figure 18:

Figure 18 Graphical Representation Third benchmark for

the zoom levels 7 until 13 (Windows, NTFS and SSD)

 The performance improvement of LevelFilesSet over
the SimpleFormat and ImageBlock, in the 13th zoom
level, is approximately 327%.

3.2 Outcome

 The LevelFilesSet’s retrieval time is faster than that
of SimpleFormat and ImageBlock in all the
benchmarking scenarios. It is important to highlight the
idea behind the LevelFilesSet methodology. Not only
does LevelFilesSet provide better results than the other
structures, but it also performs optimally under any
operating and file system. However, one significant issue
arises as the zoom level increases: the TileData file gets
extremely large, rendering it impossible to store tiles
using only one disk. For instance, for the 15th zoom level,
it is expected to store 1,073,741,824 tiles, and since the
average size of a tile is 4KB, the expected size of the
entire zoom level is approximately 4 Terabyte (TB). As
the file size increases, LevelFilesSet develops problems.
LevelFilesBlock, is expected to provide the necessary
guidelines that will show the way the tiles should be
divided across different storage disks in an efficient and
scalable manner.

4. Cloud Benchmarks

 With the recent rise of the cloud-based technologies,
more and more applications are based entirely on the
cloud and thus, it is worth examining the performance of
SimpleFormat, ImageBlock, and LevelFilesSet on such
platforms. Google Cloud offers a wide variety of APIs
which create a suitable solution for tile storage and
retrieval. Furthermore, Google Cloud offers a set of easy-
to-use tools and documentation that make it easy for
developers to implement tile systems. By choosing a
cloud-based approach to tile storage and retrieval,
developers can simply upload the dataset and retrieve it.

Cloud-based approaches free the user from having to
develop and implement from scratch a local data center.
Consequently, the company can avoid hiring specialized
personnel as well as saving space and funds that would be
dedicated to a physical local data center. Lastly, choosing
a cloud-based solution eliminates the need for backups,
security, maintenance, hardware upgrade, and peripheral
running costs. Importantly, however, there are a number
of trade-offs when choosing cloud hosting. Namely, the
company relies on a single vendor that can control the
availability and price of the offered services. Further, this
solution is mostly applicable for small to medium sized
companies, as scalability will rapidly increase both the
price and the reliance on a single external vendor.
Beyond expanding on the intricacies of these benefits and
drawbacks of using a cloud based solution, this section
deals with serving tiles by using the Google Cloud.
Figure 19 describes the architecture of the deployed
application.

Figure 19 Architecture of Tile Serving in Google Cloud

 The same algorithm used for the local benchmarks
presented in Figure 15 will be used for this benchmark.
However, since the Google environment hosts multiple
applications and the traffic is different depending on
temporal load during the test, the benchmark will run
twice per day for three consecutive days, summing up to
6 different benchmark results, all of which will be
performed at consistent times, separated by 12h: 10AM
and 10PM (time zone UTC-3h). The times were chosen
paradigmatically since high traffic is expected to occur in
the morning and low traffic is expected to occur at night.
However, since Google hosts multiple applications across
different regions within the cloud, high traffic could
occur at any time, and is not open to estimation (Savage
et al., 2009). This benchmark controls for the differences
in OS and hardware that are inescapable in local drive
benchmarks.

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 9 of 10

Figure 20 Google Cloud benchmark within the span of 3

days

 Within the span of three days (Figure 20),
LevelFilesSet performed faster than the other approaches
with an average 9.33% increased speed (for zoom level
10). ImageBlock performed, on average, 31.9% faster
than SimpleFormat. Based on these benchmarks, it is
logical to assume that Google’s object based file system
favors structured subdirectories which contain limited
numbers of tiles (Mesnier et al., 2003); hence the increase
of ImageBlock’s performance in comparison with the
benchmarks run locally. These results also enhance
LevelFilesBlock’s expected efficiency on the cloud since
it also follows the ImageBlock’s structure. ImageBlock
(and SimpleFormat) supports updating and deleting tile
images easily, whereas LevelFilesSet, in its current
version, does not. If performance is the main concern for
developing the web tiled map management system, then
LevelFilesSet would be the right data structure to choose.
However, if the tile dataset gets updated frequently, then
ImageBlock would be the most suitable solution. Google
offers an easy to use deployment platform and the results
are very fast. However, the biggest drawback of using
Google Cloud is the price of the APIs, and this is
discussed in the next section. A flowchart of the decision-
making process can be seen in Figure 21.

Figure 21 Flowchart for choosing the data structure

The overall price of the benchmarks described above was
about US $300. The price of Google Engine is based on
multiple factors, such as the number of users, the dataset,
the APIs used and so on. Running costs are a
predominant concern for developers that are interested in
using the Google Cloud APIs. Google offers a pricing-
estimation tool that makes it easy for developers to pre-
calculate the expected expense based on their usage. As
previously stated, Google offers a rich number of APIs

that developers can embed into their applications and
configure easily. However, this does not come for free. It
is highly recommended that developers, prior to taking
the architectural decision of deploying their applications
in the Google Cloud Platform, use the pricing tool to
estimate the expected cost of the system.
 Another significant factor to consider is the
geolocation of the server. Google cloud operates only in
specific locations (Stevens, 2016). If the majority of
expected users come from a place which is not listed as a
location for a potential server, then the latency is
expected to be higher than for a place where Google
Cloud contains multiple servers (e.g., North
Virginia). The developers should consider all the
mentioned issues prior to choosing to deploy their
applications in Google Cloud and developing web tiled
map management systems based on Google Cloud.
Overall, cloud based solutions are convenient, but
severely restricted by physical practicalities, which might
improve in future, but currently pose limitations on
usability.

5. Conclusions

 The purpose of this research was to determine which
data structure provided the most scalable and efficient
system under which tile images could be stored and
retrieved. In conducting this research, four tile storage
solutions (database, SimpleFormat, ImageBlock, and
LevelFilesSet) were chosen and implemented from
scratch. The database solution offered the slowest results
out of the alternative solutions; databases could be scaled
across different systems but their performance was slow
compared to the other techniques. During the locally
performed benchmarks, the file system based solutions
(SimpleFormat and ImageBlock) performed better than
the database approach. Further, in these local benchmarks,
SimpleFormat performed faster than the ImageBlock
solution. This performance was explained due to the
impact of the exponential growth of the subdirectories
within the increasing number of zoom-levels. That is, the
more the sub-directories within a zoom level, the greater
the latencies on the locally-tested file systems, such as
NTFS and ExFAT.
Different results were observed when the cloud-based
benchmarks were performed. Specifically, the Google
Cloud object-based file system favored the structured
subdirectories and the ImageBlock performance was
greater than its performance tested in the local
environment. For ImageBlock to provide efficient results,
a balance should be kept between the number of sub-
divided directories (which should be the minimum
applicable) and the number of tiles within the subfolder
(which should be the maximum). On the contrary,
LevelFilesSet provides the fastest performance and scales
under any system. Importantly, this comes with
drawbacks such as not supporting dynamic tile adding
and deletion within a zoom level. If a tile needs to be
replaced, then LevelFilesSet has to generate the tiles for

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

 10 of 10

the entire zoom level. Furthermore, in its current version,
LevelFilesSet stores the entire tile dataset in two single
files which renders tile serving for zoom levels more than
15 not scalable. A hybrid combination of ImageBlock and
LevelFilesSet, named LevelFilesBlock, is proposed to
take advantage of LevelFilesSet’s performance
superiority as well as ImageBlock’s elegance and
scalability on distributing the tiles across different storage
systems. With the LevelFilesSet logic being applicable to
any type of data storage, an ambitious extension could be
the implementation of a generic form that supports
information storage of any type. Another potential
refinement would be examining the delays between the
communication of the objects (e.g., TileData file with
Lookup file). If these delays are reduced, LevelFilesSet
could produce more efficient results. In the long term,
adoption of this data structure can transcend the
limitations imposed by different environments, while
improving upon the speed and efficiency of existing
system-specific solutions.

6. References

 Barish, G. and Obraczke, K., 2000. World wide web
caching: Trends and techniques. IEEE Communications
magazine, 38(5), pp.178-184.
 Brian Stevens (2016), Google Cloud Platform Blog,
Vice President of Google Cloud, URL:
https://cloudplatform.googleblog.com/2016/09/Google-
Cloud-Platform-sets-a-course-for-new-horizons.html
 Gupta, A., Ferris, C., Wilson, Y. and
Venkatasubramanian, K., 2002. Implementing Java
computing: Sun on architecture and applications
deployment. IEEE Internet Computing, 2(2), pp.60-64.
 Gupta, Priya. "Providing caching abstractions for web
applications." PhD diss., Massachusetts Institute of
Technology, 2010.
 MBTile Format, MapBox, 2010, URL:
https://www.mapbox.com/help/an-open-platform/
 MS-EFSR: Encrypting File System Remote
(EFSRPC) Protocol. Microsoft. 14 November 2013.
 Ni, T., Schmidt, G.S., Staadt, O.G., Livingston, M.A.,
Ball, R. and May, R., 2006, March. A survey of large
high-resolution display technologies, techniques, and
applications. In Virtual Reality Conference, 2006 (pp.
223-236). IEEE.
 Sample, J.T. and Ioup, E., 2010. Tile-based geospatial
information systems: principles and practices. Springer
Science & Business Media.
 Savage, S. J., & Waldman, D. M. (2009). Ability,
location and household demand for Internet bandwidth.
International Journal of Industrial Organization, 27(2),
166-174.
Systems and Software, 2005. ISPASS 2005. IEEE
International Symposium on (pp. 10-20). IEEE.
 Sears, R., Van Ingen, C. and Gray, J., 2007. To blob
or not to blob: Large object storage in a database or a
filesystem?. arXiv preprint cs/0701168.

 TNTgis - Advanced Software for Geospatial Analysis,
MicroImages, Inc. 2010, URL:
http://www.microimages.com/documentation/TechGuide
s/78googleMapsStruc.pdf
 Zhang, Y., Li, D. and Zhu, Z., 2008, July. A server
side caching system for efficient web map services.
In Embedded Software and Systems Symposia, 2008.
ICESS Symposia'08. International Conference on (pp. 32-
37). IEEE.

Proceedings of the International Cartographic Association, 2, 2019.
29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-2-66-2019 | © Authors 2019. CC BY 4.0 License.

