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Abstract: Buses are considered as an important type of feeder model for urban metro systems. It is important to 

understand the integration of buses and metro systems for promoting public transportation. Using smart card data 

generated by automatic fare collection systems, we aim at exploring the characteristics of bus-and-metro integration. 

Taking Shanghai as a case study, we first introduced a rule-based method to extract metro trips and bus-and-metro trips 

from the raw smart card records. Based on the identified trips, we conducted three analyses to explore the 

characteristics of bus-and-metro integration. The first analysis showed that 46% users have at least two times of using 

buses to access metro stations during five weekdays. By combining the ridership of metro and bus-and-metro, the 

second analysis examined how the share of buses as the feeder mode change across space and time. Results showed that 

the share of buses as the feeder mode in morning peak hours is much larger than in afternoon peak hours, and metro 

stations away from the city center tend to have a larger share. Pearson correlation test was employed in the third 

analysis to explore the factors associated with the ratios of bus-and-metro trips. The metro station density and access 

metro duration are positively associated with the ratios. The number of bus lines around 100 m to 400 m of metro 

stations all showed a negative association, and the coefficient for 200 m is the largest. In addition, the temporal 

differences of the coefficients also suggest the importance of a factor might change with respect to different times. 

These results enhanced our understanding of the integration of buses and metro systems. 
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1. Introduction 

Metro systems are a preferred public transport mode 

worldwide, because of their fast speed and high passenger 

capacity. An increasing number of cities are constructing 

metro systems to cope with challenges related to urban 

sprawl, traffic congestion, and air pollution, in particular 

in China. Building a metro system that covers every point 

in a city is difficult due to the high costs of construction 

and some policy limitations (e.g. historical zones). 

Additionally, a preferred metro station is not always 

easily accessible by non-motorized transport modes (e.g. 

walking or biking). Thereby, to improve the 

accessibilities of the metro systems, many feeder bus 

lines are built around the metro stations. Besides 

increasing the metro accessibilities, the integration of 

buses and metro systems also plays a vital role in 

ensuring the success of multimodal transport systems. A 

well-designed bus-metro transport network can improve 

the overall accessibility of public transport, offering 

chances to increase public transport use. Therefore, it is 

essential to understand the integration of buses and metro 

systems. 

According to the literature (Goel and Tiwari, 2016; Pan et 

al., 2010), buses are commonly reported as an important 

type of feeder mode for the metro systems. A number of 

cities in China have launched policies (e.g. free or 

discounted transfer) to encourage the integration of buses 

and metro systems, such as Beijing and Shanghai. In 

addition, some cities outside China also offer similar 

policies. For instance, the “T Money” service in Seoul 

allows a free transfer between buses and metro systems 

(Sun et al., 2017).  

Over the past decades, automatic fare collection systems 

(AFCs) have been introduced to many cities, offering a 

convenient way to acquire data related to public transport 

use. Compared with traditional data sources, such as 

travel surveys or diaries, the large-scale smart card (SC) 

data generated by AFCs are easier to collect (Ma et al., 

2012). Additionally, the SC data usually are recorded at a 

finer spatiotemporal scale. Many studies have 

demonstrated the effectiveness of SC data in transport-

related research, such as transit ridership modeling (Sun 

et al., 2017; Tu et al., 2018) and commuting pattern 

mining (Ma et al., 2017).  

In this study, we aim to utilize the SC data to analyze the 

characteristics of the bus-and-metro integration. To be 

specific, the SC data are first processed to extract metro 

trips and bus-and-metro trips. Secondly, general 

statistical analyses correspond to the bus-and-metro trips 

are presented. Thirdly, by comparing the metro ridership 

and bus-and-metro ridership, we examine the differences 

in their spatiotemporal patterns. Lastly, Pearson 

correlation test is employed to explore the factors that are 
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correlated with bus-and-metro ridership and the share of 

buses as the feeder mode. 

2. Literature review 

Depending on the feeder mode, studies related to the 

feeder services of public transit can be classified into four 

categories: walk-and-ride, bike-and-ride, park-and-ride, 

and bus-and-ride (Daniels and Mulley, 2013; El-Geneidy 

et al., 2014). This study belongs to the category of bus-

and-ride. We thereby focus on the studies related to bus-

and-ride below. 

Many studies related to the bus-and-ride have been 

focused on the transfer between buses and public transit 

(e.g. rail and metro). Tyrinopoulos and Antoniou (2008) 

discussed factors that related to the quality of public 

transportation transfer from three aspects, the distances 

between the transfer points, the waiting time, and the 

information provision at the transit stations. Results 

showed that the transfer quality plays a critical role in the 

overall quality of public transit. Seaborn, Attanucci and 

Wilson (2009) validated the usefulness of SC data in 

identifying the transfer trips by comparing with the 

London Travel Demand Survey (LTDS). Jang (2010) 

utilized SC data to estimate the travel time and identified 

the transfer points that need to be improved based on the 

transfer time. Hu et al. (2012) proposed a model to 

optimize the feeder buses of trail transit and showed the 

effectiveness of the proposed model. Zhao et al. (2017) 

proposed a method to isolate transfer points with longer 

transfer times and many passengers by using SC data. 

According to them, the decay time is reflected as an 

critical component of the total transfer time. Wang et al. 

(2018) characterized the interchange from bus to metro 

based on four aspects: the average transfer time, average 

Euclidean and network distance between metro and its 

feeding bus stops, and average transfer demand. The k-

means clustering method was applied to identify the 

transfer points that need improvements.  Some studies 

have a pitucular interest in methods for extracting the 

bus-and-ride trips from SC data. For instance, (Ma et al., 

2012) proposed a Markov chain-based method to extract 

the boarding location of bus trips from raw SC records. 

Using the bus trajectory and the boarding time of buses, 

Tu et al. (2018) presented an interpolation-based method 

to extract the boarding locations of bus trips.  

3. Methodology 

3.1 Data  

The dataset used in this study covers the SC transaction 

records generated in a normal week in 2015 of Shanghai, 

with a total number of 98.2 million transaction records. 

Each record includes seven fields: user ID, date, time, bus 

line ID or metro station name, transportation mode, fee, 

discount. In Shanghai, the smart card can be used for the 

payment of systems such as metro, bus, taxi, ferry, and 

parking, which can be distinguished by the field of 

transportation mode. In this study, only the records 

correspond to buses and metro lines are used for the 

following analysis. In Shanghai, 80% of public 

transportation is paid by using smart cards 1 , which 

somehow guarantee the representativeness of the SC data 

for research related to public transportation. Other data 

related to metro stations and bus lines were collected via 

Gaode map API (one of the leading map services in 

China). 

3.2 Trip identification 

There are three types of trips need to be extracted, i.e., 

bus trips, metro trips, and bus-and-metro trips. A bus-

and-metro trip in this study is illustrated by an example in 

Figure 1. The trip starts with a bus journey with the aim 

of accessing metro stations. After alighting from buses, a 

user walking from the alighting bus station to the aimed 

metro station. The egress part after the alighting from the 

metro station is not considered in this study. Each bus-

and-metro trip is split into two parts: access metro part 

and on metro part. The access metro includes the buses 

journey and walking journey. 

 
Figure 1. An example of a bus-and-metro trip. 

Since each bus transaction record corresponds to a bus 

trip, it is easy to identify the bus trips. For the 

identification of a metro trip, two transaction records are 

required, corresponding to the tap-in and tap out of the 

metro trip, respectively. Normally, a metro trip is started 

with a record of fare equal to 0 and ended with a non-zero 

fare, because users are only required to pay at the point of 

tap-out. Based on this, by chronologically sorting the 

records for each user, it is easy to extract the metro trips. 

Users with an odd‐numbered transaction record are 

ignored in this study. In addition, metro trips with 

abnormal time durations are ignored as well. 

Based on the identified bus and metro trips, we need to 

identify the bus-and-metro trips from the metro trips. 

Since the transaction records of buses have no 

information (i.e., time and location) related to the bus 

alighting in our dataset. The commonly used constraint 

elapsed time-based method cannot be applied directly 

(Seaborn et al., 2009). In Shanghai, if a user has a bus 

transaction record within 2 hours before the tap-in time of 

the metro, the user can get a discount of 1 Yuan. By using 

this information, we identify if a metro trip belongs a 

bus-and-metro trip by two criteria: 

1) The metro trip is labeled as a discount trip, and 

the amount of discount equal to 1 Yuan; 

2) There is at least one bus trip with a tap-in time 

within 2 hours before the metro tap-in that 

generated by the same user. 

In case of multiple buses trips are detected within the 120 

minutes before a metro trip. We assume that the bus trip 

                                                           
1 http://sh.sina.com.cn/news/m/2015-10-26/detail-

ifxizwsm2397127.shtml 
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with the lowest time difference as the access trip. It is 

noted that the bus trips before the metro trips are assumed 

to serve as the function of accessing the metro stations. 

4. Analytical results 

4.1 General trip characteristics 

The results of the trip identification are listed in Table 1. 

In total, there are 28.5 million metro trips and 37.2 

million bus trips are extracted. Around 15.1 % of metro 

trips are identified as bus-and-metro trips, which also 

indicates the importance of the bus and metro integration. 

 Number 

bus trips 37.2 million 

metro trips 28.5 million 

bus-and-metro trips 4.3 million 

Table 1. The numbers of different types of trips 

The time duration for the two parts (i.e., access metro and 

on metro parts) of the bus-and-metro trips are shown in 

Figure 2. The median values for the two parts are 17 

minutes and 34 minutes. It is noticed that 5-10 minutes is 

the most frequent time bin that needs for accessing the 

metro, and the access time shows a decrease pattern after 

this peak bin. On the other hand, 20-25 minutes acts as 

the peak time bin for on metro time duration, starting 

from this point, a decrease pattern is observed as well. 

The two distributions generally reflect the dominant role 

of the metro part among the bus-and-metro trips. It is 

reasonable because metro systems in metropolis usually 

are faster than buses and thus attract more users. 

 
Figure 2. The time durations of access metro (a) and on metro 

(b) parts of the bus-and-metro trips. 

To examine if the bus-metro integration is a routine or an 

impromptu behavior, the proportions of users with 

different frequencies of bus-and-metro integration during 

the five weekdays are calculated as an indicator. The 

results are shown in Table 2. As shown, there are 46% 

users have at least two times of using buses to access the 

metro stations during the five weekdays. Correspondingly, 

56% users only show one bus-and-metro trip, which 

indicates over half of the users integrate the bus and 

metro system as an impromptu behavior. However, 

compared with the corresponding figures (11% users 

have at least 6 times in three weeks) of bikeshare-metro 

integration reported in Nanjing, China (Ma et al., 2018)), 

reflecting that buses act as a more stable feeder mode of 

metro systems than shared bikes.  

 

 

 

Frequency 1 2 3 4 5 

proportion 56.0% 15.0% 10% 9.5% 9.5% 

Table 2. The proportions of users with different frequencies of 

bus-and-metro integration during the five weekdays. 

4.2 Spatiotemporal analysis 

Following the general analysis of the trip characteristics 

of the bus-and-metro trips, we focus on the 

spatiotemporal analysis of the bus-and-ride trips in this 

section. Specifically, we aim to examine how the bus-

and-metro integration change across space and time. 

Additionally, in order to understand the role of buses as 

the feeder mode, a comparison between the 

spatiotemporal patterns of bus-and-metro trips and the 

entire metro trips is conducted. 

The hourly distributions of metro ridership, bus-and-

metro ridership, and the ratios between bus-and-metro 

ridership and metro ridership are visualized in Figure 3. 

The measurement of metro trip frequency is based on the 

tap-in times of metro trips. Correspondingly, the 

measurement of the bus-and-metro trip frequency is 

based on the tap-in time of the metro journey part. For 

each day, only the period from 5:00 to 22:00 are 

considered, other times are ignored due low or no 

ridership has been detected. 

The hourly metro ridership shows a clear peak pattern 

during the commuting hours. Similarly, more bus-and-

metro trips are generated during commuting hours. 

However, compared with the patterns reflected from the 

entire metro trips, the afternoon peak for the bus-and-ride 

trips is relatively weaker. This is reflected by the 

temporal change of bus-and-metro ratios (Figure 3 (c)). It 

is noticeable that the share of buses as the access mode in 

the morning is much larger than that in the afternoon. 

Theoretically, the trip directions during morning and 

afternoon peak hours are opposite. Precisely, the morning 

and afternoon commuting correspond to the home-work 

trips and work-home trips, respectively. In this way, the 

ratio differences might indicate that buses are a more 

attractive feeder mode (the access part) for the home-

work trips than for the work-home trips. 

 
Figure 3. The hourly distributions of entire metro ridership (a), 

bus-and-metro ridership (b), and the ratios between bus-and-

metro ridership and metro ridership (c). 

From the spatial perspective, the average daily ridership 

of metro trips and bus-and-metro trips to stations in 

central Shanghai are visualized in Figure 4. As indicated 

by the visual comparison, metro stations with a high 
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ridership trend to have a high bus-and-metro ridership. 

However, there are also cases that not exactly follow this 

trend. It can be partly explained by that the bus-and-

metro ridership is not only related to the metro ridership 

but also related to other factors such as the convenient of 

transfer and the competition from alternative feeder 

models (e.g. walking or biking). To further mine the 

spatial pattern of the share of buses as the access mode, 

the ratios between the number of bus-and-metro trips and 

entire metro ridership for metro stations in Shanghai are 

measured and visualized in Figure 5. Generally, the bus-

and-metro ratios are relatively small for stations in the 

city center, and more stations with large ratios are found 

near or outside the outer ring road (i.e., the central urban 

area of Shanghai). The highest and the lowest ratios for 

the bus-and-metro trips are 0.870 and 0.003, 

corresponding to the Lingang Avenue metro station and 

the Pudong International Airport respectively. The former 

one is probably due to very less residential areas are 

found around the metro station, and the latter one is 

mainly used for transfer purposes of air passengers. 

 

Figure 4. The average daily number of metro trips and bus-and-

metro trips to different metro stations in central Shanghai.  

 

Figure 5. The ratios of bus-and-metro trips for different metro 

stations. 

4.3 Correlation analysis 

In this section, Pearson correlation test is used to examine 

the factors that correlate with the average daily bus-and-

metro ridership and the bus-and-metro ratios. We present 

the analyses of these two set of tests one by one.  

For the correlation tests of bus-and-metro ridership, 

metro ridership, access metro duration, metro station 

density, and the numbers of bus lines around 100 m to 

400 m buffer of the metro station are selected. The metro 

ridership is measured by the average number of metro 

trips during the working days. The access metro duration 

also corresponds to the average duration of the access 

metro trips (i.e., bus riding and walking to metro station) 

during working days. The density of a metro station is 

represented by the reciprocal of the average distance of 

the nearest 4 metro stations around the metro station. The 

number of bus lines is measured by the number of 

individual bus lines within a given threshold. The 

distance between a bus line and a metro station is 

measured by the nearest distance of buses line stations 

and metro entrances. In this study, four buffer thresholds 

are selected: 100 m, 200 m, 300 m, and 400 m.  

The results of the Pearson correlation test are shown in 

Table 3. As expected, the metro ridership shows a 

positive association with the bus-and-metro ridership. 

Whereas, the access metro duration is negatively 

correlated with the bus-and-metro ridership. This 

indicates that a shorter access trip trend to have more bus-

and-ride trips. The numbers of bus lines within 100 m to 

400 m are positively associated with bus-and-ride 

ridership. The positive associations can be easily 

understood because more bus lines usually attract more 

users. Besides, the coefficient corresponds to 300 m is the 

largest. At last, the negative correlation between the 

metro density and the bus-and-ride ridership is very weak. 

variable  coefficient p-value 

metro ridership  0.53 0.000 

access metro duration -0.21 0.000 

metro density  -0.11 0.055 

bus line around 100 m 0.30 0.000 

bus line around 200 m 0.50 0.000 

bus line around 300 m 0.56 0.000 

bus line around 400 m 0.47 0.000 

Table 3. The results of Pearson correlation tests between the 

bus-and-metro ridership and selected variables. 

The second set of correlation tests focus on the 

correlations between variables and bus-and-metro ratios, 

aiming at examining the factors that related to the share 

of buses as the access mode. Three different types of 

ratios are measured, i.e., the average daily ratio, the 

average morning peak ratio (7:00 - 9:00), and the average 

afternoon peak ratio (17:00 - 19:00). Following the same 

procedure as the first test, the results are listed in Table 4.  

Compared with the results from Table 3. It is clear that 

the metro density shows a stronger negative correlation 

with the bus-and-metro trip ratio. In other words, metro 

stations located at the area of high-density of metro 

stations tend to have a lower share of bus-and-metro trips. 

A higher density of metro station means easier access to 

the metro stations by using a non-mortised transportation 

mode. In addition, given users usually prefer metro 

stations near to their starting points, it is reasonable that a 

stronger negative correlation is shown. It is also noticed 

that the access metro duration shows a bigger coefficient 

with the bus-and-metro ratio than with the bus-and-metro 

ridership. This again stresses the access time is an 

important factor associated with the selection of buses as 

the feeder mode. In contrast, the coefficient between the 

number of bus line around 300 m is much smaller than 

the corresponding value in Table 3. Among the four 

variables related to the bus line number, the 200 m buffer 

shows the strongest association with the metro-and-bus 
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ratio. This indicates that 200 m might act as the 

“acceptable” walking distance for transfer between buses 

and metro systems. 

A comparison of coefficients for morning peak and 

evening peak reflects: 1) the correlations related to access 

metro duration only shows a slight difference between the 

morning peak and afternoon peak; 2) the metro density 

shows much stronger negative association with the bus-

and-metro ratios in the afternoon peak than in the 

morning peak; 3) the number of bus line around metro 

stations shows a weaker positive correlation in the 

afternoon peak than in the morning peak. The differences 

of the coefficients in the morning and afternoon peaks 

can be partly explained by the ratio differences of bus-

and-metro trips in the morning and evening. This reflects 

that the same factor might have different roles in 

explaining the share of bus-and-metro trips across 

different times. 

variable  coefficient p-value 

Daily   

access metro duration -0.48 0.000 

metro density  -0.45 0.000 

bus line around 100 m 0.28 0.000 

bus line around 200 m 0.32 0.000 

bus line around 300 m 0.23 0.000 

bus line around 400 m 0.12 0.039 

Morning peak   

access metro duration -0.43 0.000 

metro density  -0.34 0.000 

bus line around 100 m 0.29 0.000 

bus line around 200 m 0.39 0.000 

bus line around 300 m 0.35 0.000 

bus line around 400 m 0.25 0.000 

Afternoon peak   

access metro duration -0.45 0.000 

metro density  -0.47 0.000 

bus line around 100 m 0.23 0.000 

bus line around 200 m 0.25 0.000 

bus line around 300 m 0.16 0.005 

bus line around 400 m 0.07 0.25 

Table 4. The results of Pearson correlation tests between the 

bus-and-metro ratios and selected variables for different periods. 

5. Conclusion 

This study focuses on using SC data to explore the 

characteristics of bus-and-metro integration. We first 

present methods to identify the bus-and-metro trips. We 

then analyze the bus-and-metro trips from three different 

aspects: the general trip characteristics, spatiotemporal 

patterns, and the factors associated with the metro-and-

ride ridership and ratios. It is found that 46% users have 

at least two times of using buses to access the metro 

stations during the five weekdays. The spatiotemporal 

analysis indicates the patterns of metro ridership and bus-

and-metro ridership show positive associations in terms 

of temporal and spatial distribution. On the other hand, 

morning trips show larger bus-and-metro ratios than 

afternoon trips, and suburban areas show larger ratios 

than the city center. The access metro time duration and 

metro density are negatively associated with station-level 

bus-and-metro ratios and the number of bus lines shows a 

positive association. Those analytical results enhanced 

our understanding of the integration of buses and metro 

systems. 

In this study, we only examined the associations between 

the bus-and-metro ratios and six variables. In the future, 

we plan to explore the more variables that might be 

associated with the bus-and-metro ratios, such as the bus 

frequency, quality of road network around the metro 

stations. Furthermore, we will apply spatiotemporal 

regression model to estimate the bus-and-metro ratios 

across different spaces and times. 
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