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Abstract: Archive topographical maps are a key source of geographical information from past ages, which can be 
valuable for several science fields. Since manual digitization is usually slow and takes much human resource, automatic 
methods are preferred, such as deep learning algorithms. Although automatic vectorization is a common problem, there 
have been few approaches regarding point symbols. In this paper, a point symbol vectorization method is proposed, 
which was tested on Third Military Survey map sheets using a Mask Regional Convolutional Neural Network 
(MRCNN). The MRCNN implementation uses the ResNet101 network improved with the Feature Pyramid Network 
architecture and is developed in a Google Colab environment. The pretrained network was trained on four point symbol 
categories simultaneously. Results show 90% accuracy, while 94% of symbols detected for some categories on the 
complete test sheet. 
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1. Introduction 

 
Historical maps contain vast amounts of geographical 
information, which can help us understand environmental 
and physical changes that happened over past ages. These 
maps, however, are usually in printed form and do not 
have a vector geo-data representation, which is critical in 
modern geospatial analysis since these methods are 
mostly digital. Creating vector data by manual 
digitization – especially with hundreds of sheets – is 
mostly a slow and laborious process; therefore, it is 
profitable to use automatic solutions where possible.  
There have been several approaches to this problem in 
recent years. Iosifescu et al. proposed a vectorization 
methodology for extracting areal and linear features using 
binary image segmentation and vectorizing tools 
provided by the open source GDAL and OGR libraries 
(Iosifescu, Tsorlini, and Hurni 2016). A similar study by 
Gede et al. focused on vectorizing linear hydrographic 
features using QGIS (Gede et al. 2020). These studies 
also provide scanning and rectifying techniques as well as 
several raster pre-processing and vector cleaning 
methods. 
In case of point symbols, vectorization can be viewed as 
an object detection task where the goal is to identify the 
type of the object and obtain the coordinates of its 
geographical reference, which can be stored in a spatial 
database. Supervised machine learning algorithms, such 
as Deep Convolutional Neural Networks (CNN) have 
proved to be more effective for such object detection 
tasks than conventional segmentation methods. CNN-s 
have been used in various map vectorization applications, 
such as automatic label extraction (Laumer et al. 2020), 
wetland extraction (Jiao, Heitzler, and Hurni 2020) and 

improved image segmentation by predictions of areal 
symbol locations (Groom et al. 2020). Saeedimoghaddam 
and Stepinski used CNN to detect road intersection points 
and achieved an average of 90% accuracy, with 82% of 
intersection points extracted (Saeedimoghaddam and 
Stepinski 2020). Quan et al. focused on point symbol 
recognition combined with image segmentation on a 
pretrained CNN of AlexNet architecture and achieved 
98.97% accuracy on single test images (Quan et al. 
2018). 
In this study, an improved CNN was used to detect four 
distinct point symbols simultaneously on scanned 
historical topographic maps. The process is based on 
transfer learning using a pretrained network (Tan et al. 
2018), which shortens the training time and gives 
promising results with a relatively small dataset. 
Detection can be applied to large images (i.e. complete 
scanned map sheets), and resulting points are transformed 
into projection coordinates. The achieved detection 
accuracy is 90%, with 94% of symbols detected for some 
categories on the test sheet. Final results are visualized by 
GIS Software. 

2. Data and methods 

2.1 Target map 

The target maps of this study were scanned versions of 
four 1 : 200 000 scale map sheets from the Third Military 
Survey of Austria-Hungary (made at the end of the XIX. 
century). These sheets can be found physically in the 
Map Collection of ELTE Eötvös Loránd University. The 
sheets cover a 1° × 1° area of the Earth and depict 
territories of present Romania and Bulgaria, near the 
Danube river. The terrain is diverse, including 
mountainous regions, hills, and lowlands; therefore, it is 
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suitable to experiment on symbol detection over different 
backgrounds.  
There are several point symbol categories depicted on the 
sheets. In this paper, the focus was on frequently shown 
symbols because training a neural network requires a 
sufficient amount of training and validating images that 
contain the target object. For some categories, the 
appearance of the symbols is different between the sheets, 
mainly because of the various styles of drawing used. 
Considering the above, four categories with uniform 
symbols were chosen as subject to detection, which are: 
catholic church, orthodox church, elevation point, and 
watermill (Figure 1). 
 

 
Figure 1. The symbols subject to detection. From left to right: 
catholic church, elevation point, orthodox church, watermill.  

2.2 Neural network 

The deep neural network used for symbol detection in 
this study is a Mask Regional Convolutional Neural 
Network, or MRCNN (He et al. 2020). The MRCNN is 
designed for instance segmentation purposes, combining 
object detection and semantic segmentation. This means 
generating bounding boxes and segmentation masks for 
each instance of an object, such as people, balloons, or 
map symbols. 
In case of vectorizing point symbols, the segmentation 
mask is not that relevant because we are only interested 
in the coordinates of the symbol’s centre, which can be 
calculated merely from the bounding box. Nevertheless, 
when detecting areal features, such as lakes or 
settlements, the mask shows the objects’ exact extension, 
making it an essential part of the process. 
The open source implementation of MRCNN used in this 
study can be found in a repository on GitHub (Abdulla 
2017). The model uses the ResNet101 network as 
backbone (He et al. 2016), which is a standard 
convolutional neural network that serves as a feature 
extractor. This is improved with a Feature Pyramid 
Network architecture which performs better at 
representing objects at multiple scales than Single Feature 
Map approaches (Lin et al. 2017). 
The repository contains pretrained weights on the MS 
COCO dataset, a large, richly annotated dataset 

containing common objects (Lin et al. 2014). This means 
that these weights can be used as a starting point to train 
the model with one’s own dataset, simplifying the 
training process. The source code of this MRCNN build 
is written in Python3 and utilizes the Keras and 
TensorFlow libraries. Programs for training, debugging, 
and visualization are also available in Jupyter Notebook 
form. Source code of the program discussed in this paper 
is available at:  
https://github.com/vassanyig/custom_mrcnn/tree/master/
4symbols_code. 

2.3 Training data 

Training the model requires manually annotated images 
of the target objects. These images were produced by 
cutting small territories from the original map and then 
annotated with an open source web tool called Make 
Sense (Skalski 2019). To serve as input for the neural 
network, the images were divided into training and 
validation groups in a 70 : 30 ratio due to the small size 
of the dataset. For all four symbols, a hundred of images 
were used, although some of them contain more than one 
annotated object due to the density of the symbols on the 
original map. The annotated symbols are from various 
parts of the map sheets, covering many different 
backgrounds. The size of symbols on the images can also 
change, which is handled due to the multi-scale approach 
of the Feature Pyramid Network.  

2.4 Colab 

The detecting algorithm is ran in a virtual environment 
called Colaboratory (or Colab), a free service provided by 
Google (Nelson and Hoover 2020). Colab offers a Linux-
based virtual machine with 8-12 GB RAM and 50-70 GB 
hard drive space, and a GPU that can be utilized to 
accelerate the computing process. The code is in Jupyter 
Notebook form, which allows interactivity when running 
the program. Being a Google service, Colab supports 
Google Drive connection, which is a convenient way of 
importing and exporting files from the process, such as 
trained models, target images, and results. The runtime is 
limited to 12 hours; therefore, setting up the workspace 
and establishing the Google Drive connection has to be 
done at every session. 

2.5 Training the model 

To train the model, the pretrained weights file and the 
annotated images have to be provided to the code, which 
was done through Google Drive. The code was modified 
to include four classes with their label names used in the 
annotation process. Configuration parameters can be 
manually set, such as minimum detection confidence and 
the number of epochs. In the created model, all layers 
were trained with four epochs using 1500 training steps 
per epoch. Additionally, a minimum of 80 percent 
confidence was specified. The trained model is saved in a 
Google Drive folder, which makes it an easy access for 
the detection program. 

Proceedings of the International Cartographic Association, 4, 2021.  
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent single- 
blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-109-2021 | © Author(s) 2021. CC BY 4.0 License.

2 of 5



   

 

2.6 Detection 

Before running the detection script, paths to the trained 
model and the target images must be specified. The 
configuration parameters of the detection should be the 
same as the ones used for training. After running the 
detection, results can be visualized by a module provided 
in the source code, which draws the detected features 
(e. g. bounding boxes, segmentation masks, labels etc.) 
on the target image. Although this can be useful for 
illustration, the output is still just a raster image. 
To obtain vectoral information about the detected 
symbols, bounding boxes are used to calculate the 
coordinates of their geographical reference points. In case 
of the elevation point and the watermill symbols, this 
reference point is at the centre of the symbols, meaning 
that the centre of the bounding box can be used. 
However, the reference point of the catholic and orthodox 
churches is the centre of the bottom circle or rectangle, 
respectively. For these symbols, the reference point is put 
lower than the middle in the Y-axis by one fourth of the 
symbol’s total length. 
The exported coordinates of the symbols are pixel 
coordinates of the target image, which are written into a 
CSV file. For each coordinate pair, the label of the object 
(i.e., it’s class) and the confidence score are included. 

2.7 Detection on large images 

In the original version of the code, all target images are 
resized to 1024�1024 pixels, which shrinks larger 
images, and consequently, the efficiency of the algorithm 
decreases. When image resizing is disabled, test results 
showed that running the detection on large images 
significantly increases the runtime to a point where the 
program results in an error. To work around this problem, 
an image splitting Python script has been written that 
makes tiles of the original image in the desired size with 
arbitrary overlap. These images are fed one by one to the 
detecting algorithm, and the resulting CSV files are then 
merged by another program into a final CSV that contains 
all detected symbols with pixel coordinates of the original 
split image. Objects on overlapping parts can be detected 
multiple times; therefore, the program filters points closer 
to each other than a threshold, supposing that they 
represent the same object.  

2.8 Georeferencing 

Additionally, a function was added to the CSV file 
merging program that transforms pixel coordinates into 
projection coordinates. This is only possible if the 
original image is georeferenced and a world file (.TWF) 
is provided, which can be automatically generated when 
georeferencing the image. The end results can be viewed 
by GIS Software and could be exported in another 
format, such as Esri Shapefile (.SHP). 

3. Results 

3.1 Single images 

The detecting program was run on single images cut from 
the original map in different scales of zoom. These files 

were not georeferenced as they served testing purposes to 
set the model parameters to achieve the best results. On 
these images, the model detected most of the symbols 
correctly without any cases of mixing them up or falsely 
detecting a symbol for a different object. Results were 
displayed using MRCNN’s visualize module (Figure 2). 
Some symbols were not detected, which was present in 
three of the four categories, but not with the catholic 
church symbol. Test results also showed that there is a 
dependency on the size of the symbols in terms of 
efficiency of the detection algorithm. In general, the 
model performed better at finding large symbols than 
small ones.  
 

  

  
Figure 2. Examples of the results on single images. Left: 
target image, right: resulting image with masks and bounding 
boxes for each symbol. Different colours represent different 
instances. 

3.2 Complete sheet 

The algorithm was run on a complete map sheet, namely 
the “43°44° Svistov” sheet scanned with 600 dpi 
resolution and 24-bit colour depth. The scanned map was 
saved in JPG format, having the extents of 10 215 pixels 
in width and 14 352 pixels in length. The image was 
georeferenced using Global Mapper in WGS84 
projection, and a .TFW file was generated. The image 
was then split with the python program, where 
rectangular tiles were chosen with 1024-pixel tile size. 
An overlap of 8% was also set to avoid failed detection 
due to symbols split in half. The detection algorithm was 
then run on the tiles, and the outputs were combined into 
a single file with projection coordinates of the points 
using the CSV merging program. Results were visualized 
as point symbols added as a vector layer over the 
georeferenced raster file using QGIS (Figure 3).   
The results on the Svistov sheet show significant 
differences between the symbol categories (Table 1). In 
case of the catholic church, 326 instances were detected, 
of which 33 proved to be false-positive. There were also 
16 symbols the detection algorithm missed. The 
remaining 293 symbols were correctly detected, which 
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shows an 89.88% precision and covers 94.82% of the 
total number of symbols on the sheet.  
The algorithm proved less effective on the elevation 
points with only four false-positive cases out of 161 
detections, but more than half of all the symbols missed. 
In case of the watermill and the orthodox church, the 
program was not able to detect any of the symbols on the 
map. This is not so surprising with the orthodox church 
because there are only two occurrences of this symbol on 
the sheet, but there are many watermills the model should 
have been able to detect.    
 

Symbol 
Catholic 
church 

Elev. 
point 

Watermill  
Orth. 

church 

Total count 309 336 99 2 

Total 

detections 
326 161 

No detections 

False 

positives 
33 4 

Undetected 16 179 

Correct 

detections 
293 157 

Precision 89.88% 97.52% 

Symbols 

detected 
94.82% 46.73% 

Table 1. Results of the detection process for each symbol. 

 
Figure 3. An example of the detected features as vector points 
drawn over the original map. Red: catholic church; Blue: 
elevation point.  Numbers represent confidence scores for each 
point. 

4. Conclusions 

4.1 Discussion of results 

The parameters of the model were optimized on single 
images, and, in general, the model detected the symbols 
sufficiently on them. However, the same model was less 
effective on a complete sheet, maintaining the detection 
accuracy for only one of the four symbols. Differences in 
the Svistov sheet results indicate that the model was well 
trained on the catholic church symbol and less adequately 

on the other three categories, which might come from the 
training images used. 
The majority of these images contain larger symbols in 
pixel size than the ones on the sheet. This could have 
influenced the neural network to become more sensitive 
for this symbol extent rather than the size of the symbols 
on the input. Since the training images were made by 
hand in various zoom and extent, it is likely that the way 
they were created affects the model to work better for the 
catholic church and worse for the other three categories. 
A possible way to overcome this problem is to create 
training images for all categories using the same zoom as 
the target map, and then retrain the neural network.  
In some cases of false symbol detections, the detected 
object was a different, similarly looking symbol, which 
the model had not been trained with (Figure 4). The 
confidence score of these features is somewhat lower 
than the score of the correct guesses, but still over the 
specified threshold. These detections happen when there 
is no information provided to the model that the object 
represents a different category; therefore, the model 
classifies it as the most likely one of the trained 
categories.  Cases like this could be reduced by training 
the model with more symbols, which is only limited by 
the availability of training images. 
 

 
Figure 4. False detection on an untrained symbol (chimney, on 
the left). The confidence score is just above the 0.8 threshold, 
whereas it is almost 1 for the correctly identified churches.   

Comparing the results to other studies, such as the study 
of Saeedimoghaddam and Stepinski shows that similar 
precision and detection rates could be achieved using this 
methodology, and with the correction of the training 
images and algorithm, efficiency can be further increased.  
 

4.2 Conclusion 

Results showed that this methodology could be used 
effectively to create vector point features from scanned 
raster map symbols, where different categories are 
detected simultaneously, and the results can be visualized 
easily by GIS software. The process also works with 
large, georeferenced images, but the results are not 
perfect, and further improvement is needed. 
Future plans include refining the experimentally chosen 
parameters of the training configuration in order to 
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achieve higher efficiency. Retraining the model with 
images containing the symbols in the same size as on the 
target map could help to achieve the same detection 
accuracy for all categories. Another field of interest is 
adding more symbols to the training process, which 
would significantly increase the amount of information 
extracted from the map.  
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