

Automatic vectorization of point symbols on archive maps

using deep convolutional neural network

Gergely Vassányi a,* , Mátyás Gede a

a Eötvös Loránd University Budapest, Department of Cartography and Geoinformatics, Gergely Vassányi –

vassanyigergely@gmail.com, Mátyás Gede – saman@map.elte.hu

* Corresponding author

Abstract: Archive topographical maps are a key source of geographical information from past ages, which can be
valuable for several science fields. Since manual digitization is usually slow and takes much human resource, automatic
methods are preferred, such as deep learning algorithms. Although automatic vectorization is a common problem, there
have been few approaches regarding point symbols. In this paper, a point symbol vectorization method is proposed,
which was tested on Third Military Survey map sheets using a Mask Regional Convolutional Neural Network
(MRCNN). The MRCNN implementation uses the ResNet101 network improved with the Feature Pyramid Network
architecture and is developed in a Google Colab environment. The pretrained network was trained on four point symbol
categories simultaneously. Results show 90% accuracy, while 94% of symbols detected for some categories on the
complete test sheet.

Keywords: MRCNN, vectorization, map symbols, Python

1. Introduction

Historical maps contain vast amounts of geographical
information, which can help us understand environmental
and physical changes that happened over past ages. These
maps, however, are usually in printed form and do not
have a vector geo-data representation, which is critical in
modern geospatial analysis since these methods are
mostly digital. Creating vector data by manual
digitization – especially with hundreds of sheets – is
mostly a slow and laborious process; therefore, it is
profitable to use automatic solutions where possible.
There have been several approaches to this problem in
recent years. Iosifescu et al. proposed a vectorization
methodology for extracting areal and linear features using
binary image segmentation and vectorizing tools
provided by the open source GDAL and OGR libraries
(Iosifescu, Tsorlini, and Hurni 2016). A similar study by
Gede et al. focused on vectorizing linear hydrographic
features using QGIS (Gede et al. 2020). These studies
also provide scanning and rectifying techniques as well as
several raster pre-processing and vector cleaning
methods.
In case of point symbols, vectorization can be viewed as
an object detection task where the goal is to identify the
type of the object and obtain the coordinates of its
geographical reference, which can be stored in a spatial
database. Supervised machine learning algorithms, such
as Deep Convolutional Neural Networks (CNN) have
proved to be more effective for such object detection
tasks than conventional segmentation methods. CNN-s
have been used in various map vectorization applications,
such as automatic label extraction (Laumer et al. 2020),
wetland extraction (Jiao, Heitzler, and Hurni 2020) and

improved image segmentation by predictions of areal
symbol locations (Groom et al. 2020). Saeedimoghaddam
and Stepinski used CNN to detect road intersection points
and achieved an average of 90% accuracy, with 82% of
intersection points extracted (Saeedimoghaddam and
Stepinski 2020). Quan et al. focused on point symbol
recognition combined with image segmentation on a
pretrained CNN of AlexNet architecture and achieved
98.97% accuracy on single test images (Quan et al.
2018).
In this study, an improved CNN was used to detect four
distinct point symbols simultaneously on scanned
historical topographic maps. The process is based on
transfer learning using a pretrained network (Tan et al.
2018), which shortens the training time and gives
promising results with a relatively small dataset.
Detection can be applied to large images (i.e. complete
scanned map sheets), and resulting points are transformed
into projection coordinates. The achieved detection
accuracy is 90%, with 94% of symbols detected for some
categories on the test sheet. Final results are visualized by
GIS Software.

2. Data and methods

2.1 Target map

The target maps of this study were scanned versions of
four 1 : 200 000 scale map sheets from the Third Military
Survey of Austria-Hungary (made at the end of the XIX.
century). These sheets can be found physically in the
Map Collection of ELTE Eötvös Loránd University. The
sheets cover a 1° × 1° area of the Earth and depict
territories of present Romania and Bulgaria, near the
Danube river. The terrain is diverse, including
mountainous regions, hills, and lowlands; therefore, it is

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent single-
blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-109-2021 | © Author(s) 2021. CC BY 4.0 License.

suitable to experiment on symbol detection over different
backgrounds.
There are several point symbol categories depicted on the
sheets. In this paper, the focus was on frequently shown
symbols because training a neural network requires a
sufficient amount of training and validating images that
contain the target object. For some categories, the
appearance of the symbols is different between the sheets,
mainly because of the various styles of drawing used.
Considering the above, four categories with uniform
symbols were chosen as subject to detection, which are:
catholic church, orthodox church, elevation point, and
watermill (Figure 1).

Figure 1. The symbols subject to detection. From left to right:
catholic church, elevation point, orthodox church, watermill.

2.2 Neural network

The deep neural network used for symbol detection in
this study is a Mask Regional Convolutional Neural
Network, or MRCNN (He et al. 2020). The MRCNN is
designed for instance segmentation purposes, combining
object detection and semantic segmentation. This means
generating bounding boxes and segmentation masks for
each instance of an object, such as people, balloons, or
map symbols.
In case of vectorizing point symbols, the segmentation
mask is not that relevant because we are only interested
in the coordinates of the symbol’s centre, which can be
calculated merely from the bounding box. Nevertheless,
when detecting areal features, such as lakes or
settlements, the mask shows the objects’ exact extension,
making it an essential part of the process.
The open source implementation of MRCNN used in this
study can be found in a repository on GitHub (Abdulla
2017). The model uses the ResNet101 network as
backbone (He et al. 2016), which is a standard
convolutional neural network that serves as a feature
extractor. This is improved with a Feature Pyramid
Network architecture which performs better at
representing objects at multiple scales than Single Feature
Map approaches (Lin et al. 2017).
The repository contains pretrained weights on the MS
COCO dataset, a large, richly annotated dataset

containing common objects (Lin et al. 2014). This means
that these weights can be used as a starting point to train
the model with one’s own dataset, simplifying the
training process. The source code of this MRCNN build
is written in Python3 and utilizes the Keras and
TensorFlow libraries. Programs for training, debugging,
and visualization are also available in Jupyter Notebook
form. Source code of the program discussed in this paper
is available at:
https://github.com/vassanyig/custom_mrcnn/tree/master/
4symbols_code.

2.3 Training data

Training the model requires manually annotated images
of the target objects. These images were produced by
cutting small territories from the original map and then
annotated with an open source web tool called Make
Sense (Skalski 2019). To serve as input for the neural
network, the images were divided into training and
validation groups in a 70 : 30 ratio due to the small size
of the dataset. For all four symbols, a hundred of images
were used, although some of them contain more than one
annotated object due to the density of the symbols on the
original map. The annotated symbols are from various
parts of the map sheets, covering many different
backgrounds. The size of symbols on the images can also
change, which is handled due to the multi-scale approach
of the Feature Pyramid Network.

2.4 Colab

The detecting algorithm is ran in a virtual environment
called Colaboratory (or Colab), a free service provided by
Google (Nelson and Hoover 2020). Colab offers a Linux-
based virtual machine with 8-12 GB RAM and 50-70 GB
hard drive space, and a GPU that can be utilized to
accelerate the computing process. The code is in Jupyter
Notebook form, which allows interactivity when running
the program. Being a Google service, Colab supports
Google Drive connection, which is a convenient way of
importing and exporting files from the process, such as
trained models, target images, and results. The runtime is
limited to 12 hours; therefore, setting up the workspace
and establishing the Google Drive connection has to be
done at every session.

2.5 Training the model

To train the model, the pretrained weights file and the
annotated images have to be provided to the code, which
was done through Google Drive. The code was modified
to include four classes with their label names used in the
annotation process. Configuration parameters can be
manually set, such as minimum detection confidence and
the number of epochs. In the created model, all layers
were trained with four epochs using 1500 training steps
per epoch. Additionally, a minimum of 80 percent
confidence was specified. The trained model is saved in a
Google Drive folder, which makes it an easy access for
the detection program.

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent single-
blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-109-2021 | © Author(s) 2021. CC BY 4.0 License.

2 of 5

2.6 Detection

Before running the detection script, paths to the trained
model and the target images must be specified. The
configuration parameters of the detection should be the
same as the ones used for training. After running the
detection, results can be visualized by a module provided
in the source code, which draws the detected features
(e. g. bounding boxes, segmentation masks, labels etc.)
on the target image. Although this can be useful for
illustration, the output is still just a raster image.
To obtain vectoral information about the detected
symbols, bounding boxes are used to calculate the
coordinates of their geographical reference points. In case
of the elevation point and the watermill symbols, this
reference point is at the centre of the symbols, meaning
that the centre of the bounding box can be used.
However, the reference point of the catholic and orthodox
churches is the centre of the bottom circle or rectangle,
respectively. For these symbols, the reference point is put
lower than the middle in the Y-axis by one fourth of the
symbol’s total length.
The exported coordinates of the symbols are pixel
coordinates of the target image, which are written into a
CSV file. For each coordinate pair, the label of the object
(i.e., it’s class) and the confidence score are included.

2.7 Detection on large images

In the original version of the code, all target images are
resized to 1024�1024 pixels, which shrinks larger
images, and consequently, the efficiency of the algorithm
decreases. When image resizing is disabled, test results
showed that running the detection on large images
significantly increases the runtime to a point where the
program results in an error. To work around this problem,
an image splitting Python script has been written that
makes tiles of the original image in the desired size with
arbitrary overlap. These images are fed one by one to the
detecting algorithm, and the resulting CSV files are then
merged by another program into a final CSV that contains
all detected symbols with pixel coordinates of the original
split image. Objects on overlapping parts can be detected
multiple times; therefore, the program filters points closer
to each other than a threshold, supposing that they
represent the same object.

2.8 Georeferencing

Additionally, a function was added to the CSV file
merging program that transforms pixel coordinates into
projection coordinates. This is only possible if the
original image is georeferenced and a world file (.TWF)
is provided, which can be automatically generated when
georeferencing the image. The end results can be viewed
by GIS Software and could be exported in another
format, such as Esri Shapefile (.SHP).

3. Results

3.1 Single images

The detecting program was run on single images cut from
the original map in different scales of zoom. These files

were not georeferenced as they served testing purposes to
set the model parameters to achieve the best results. On
these images, the model detected most of the symbols
correctly without any cases of mixing them up or falsely
detecting a symbol for a different object. Results were
displayed using MRCNN’s visualize module (Figure 2).
Some symbols were not detected, which was present in
three of the four categories, but not with the catholic
church symbol. Test results also showed that there is a
dependency on the size of the symbols in terms of
efficiency of the detection algorithm. In general, the
model performed better at finding large symbols than
small ones.

Figure 2. Examples of the results on single images. Left:
target image, right: resulting image with masks and bounding
boxes for each symbol. Different colours represent different
instances.

3.2 Complete sheet

The algorithm was run on a complete map sheet, namely
the “43°44° Svistov” sheet scanned with 600 dpi
resolution and 24-bit colour depth. The scanned map was
saved in JPG format, having the extents of 10 215 pixels
in width and 14 352 pixels in length. The image was
georeferenced using Global Mapper in WGS84
projection, and a .TFW file was generated. The image
was then split with the python program, where
rectangular tiles were chosen with 1024-pixel tile size.
An overlap of 8% was also set to avoid failed detection
due to symbols split in half. The detection algorithm was
then run on the tiles, and the outputs were combined into
a single file with projection coordinates of the points
using the CSV merging program. Results were visualized
as point symbols added as a vector layer over the
georeferenced raster file using QGIS (Figure 3).
The results on the Svistov sheet show significant
differences between the symbol categories (Table 1). In
case of the catholic church, 326 instances were detected,
of which 33 proved to be false-positive. There were also
16 symbols the detection algorithm missed. The
remaining 293 symbols were correctly detected, which

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent single-
blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-109-2021 | © Author(s) 2021. CC BY 4.0 License.

3 of 5

shows an 89.88% precision and covers 94.82% of the
total number of symbols on the sheet.
The algorithm proved less effective on the elevation
points with only four false-positive cases out of 161
detections, but more than half of all the symbols missed.
In case of the watermill and the orthodox church, the
program was not able to detect any of the symbols on the
map. This is not so surprising with the orthodox church
because there are only two occurrences of this symbol on
the sheet, but there are many watermills the model should
have been able to detect.

Symbol
Catholic
church

Elev.
point

Watermill
Orth.

church

Total count 309 336 99 2

Total

detections
326 161

No detections

False

positives
33 4

Undetected 16 179

Correct

detections
293 157

Precision 89.88% 97.52%

Symbols

detected
94.82% 46.73%

Table 1. Results of the detection process for each symbol.

Figure 3. An example of the detected features as vector points
drawn over the original map. Red: catholic church; Blue:
elevation point. Numbers represent confidence scores for each
point.

4. Conclusions

4.1 Discussion of results

The parameters of the model were optimized on single
images, and, in general, the model detected the symbols
sufficiently on them. However, the same model was less
effective on a complete sheet, maintaining the detection
accuracy for only one of the four symbols. Differences in
the Svistov sheet results indicate that the model was well
trained on the catholic church symbol and less adequately

on the other three categories, which might come from the
training images used.
The majority of these images contain larger symbols in
pixel size than the ones on the sheet. This could have
influenced the neural network to become more sensitive
for this symbol extent rather than the size of the symbols
on the input. Since the training images were made by
hand in various zoom and extent, it is likely that the way
they were created affects the model to work better for the
catholic church and worse for the other three categories.
A possible way to overcome this problem is to create
training images for all categories using the same zoom as
the target map, and then retrain the neural network.
In some cases of false symbol detections, the detected
object was a different, similarly looking symbol, which
the model had not been trained with (Figure 4). The
confidence score of these features is somewhat lower
than the score of the correct guesses, but still over the
specified threshold. These detections happen when there
is no information provided to the model that the object
represents a different category; therefore, the model
classifies it as the most likely one of the trained
categories. Cases like this could be reduced by training
the model with more symbols, which is only limited by
the availability of training images.

Figure 4. False detection on an untrained symbol (chimney, on
the left). The confidence score is just above the 0.8 threshold,
whereas it is almost 1 for the correctly identified churches.

Comparing the results to other studies, such as the study
of Saeedimoghaddam and Stepinski shows that similar
precision and detection rates could be achieved using this
methodology, and with the correction of the training
images and algorithm, efficiency can be further increased.

4.2 Conclusion

Results showed that this methodology could be used
effectively to create vector point features from scanned
raster map symbols, where different categories are
detected simultaneously, and the results can be visualized
easily by GIS software. The process also works with
large, georeferenced images, but the results are not
perfect, and further improvement is needed.
Future plans include refining the experimentally chosen
parameters of the training configuration in order to

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent single-
blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-109-2021 | © Author(s) 2021. CC BY 4.0 License.

4 of 5

achieve higher efficiency. Retraining the model with
images containing the symbols in the same size as on the
target map could help to achieve the same detection
accuracy for all categories. Another field of interest is
adding more symbols to the training process, which
would significantly increase the amount of information
extracted from the map.

4.3 Acknowledgement

EFOP-3.6.3-VEKOP-16-2017-00001: Talent
Management in Autonomous Vehicle Control
Technologies. The Project is supported by the Hungarian
Government and co-financed by the European Social
Fund.

5. References

Abdulla, Waleed. 2017. “Mask R-CNN for Object

Detection and Instance Segmentation on Keras and
TensorFlow.” GitHub Repository. Github.
https://github.com/matterport/Mask_RCNN.

Gede, Mátyás, Valentin Árvai, Gergely Vassányi, Zsófia
Supka, Enikő Szabó, Anna Bordács, Csaba Gergely
Varga, and Krisztina Irás. 2020. “Automatic
Vectorisation of Old Maps Using QGIS –Tools,
Possibilities and Challenges.” In International

Workshop on Automatic Vectorisation of Historical

Maps-13 March 2020 -ELTE, Budapest.
doi:10.21862/avhm2020.04.

Groom, Geoff, Gregor Levin, Stig Svenningsen, and
Mads Linnet Perner. 2020. “Historical Maps –
Machine Learning Helps Us over the Map
Vectorisation Crux.” In .
doi:10.21862/avhm2020.11.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2020. “Mask R-CNN.” IEEE

Transactions on Pattern Analysis and Machine

Intelligence 42 (2). IEEE Computer Society: 386–
397. doi:10.1109/TPAMI.2018.2844175.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. “Deep Residual Learning for Image
Recognition.” In Proceedings of the IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition. Vol. 2016-December.
doi:10.1109/CVPR.2016.90.

Iosifescu, Ionut, Angeliki Tsorlini, and Lorenz Hurni.
2016. “Towards a Comprehensive Methodology for
Automatic Vectorization of Raster Historical
Maps.” E-Perimetron 11 (2).

Jiao, Chenjing, Magnus Heitzler, and Lorenz Hurni.
2020. “Extracting Wetlands from Swiss Historical
Maps with ConvolutionalNeural Networks.” In
International Workshop on Automatic Vectorisation

of Historical Maps-13 March 2020 -ELTE,

Budapest. doi:10.21862/avhm2020.03.

Laumer, Daniel, Hasret Gümgümcü, Magnus Heitzler,
and Lorenz Hurni. 2020. “A Semi-Automatic Label
Digitization Workflow for the Siegfried Map.” In
International Workshop on Automatic Vectorisation

of Historical Maps-13 March 2020 -ELTE,

Budapest. doi:10.21862/avhm2020.07.
Lin, Tsung Yi, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. 2017.
“Feature Pyramid Networks for Object Detection.”
In Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR

2017. Vol. 2017-January.
doi:10.1109/CVPR.2017.106.

Lin, Tsung Yi, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. “Microsoft COCO:
Common Objects in Context.” In Lecture Notes in

Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Vol. 8693 LNCS.
doi:10.1007/978-3-319-10602-1_48.

Nelson, Mark J., and Amy K. Hoover. 2020. “Notes on
Using Google Colaboratory in AI Education.” In
Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE.
doi:10.1145/3341525.3393997.

Quan, Yining, Yuanyuan Shi, Qiguang Miao, and Yutao
Qi. 2018. “A Combinatorial Solution to Point
Symbol Recognition.” Sensors (Switzerland) 18
(10). doi:10.3390/s18103403.

Saeedimoghaddam, Mahmoud, and T. F. Stepinski. 2020.
“Automatic Extraction of Road Intersection Points
from USGS Historical Map Series Using Deep
Convolutional Neural Networks.” International

Journal of Geographical Information Science 34
(5). doi:10.1080/13658816.2019.1696968.

Skalski, Piotr. 2019. “Make Sense.”
Tan, Chuanqi, Fuchun Sun, Tao Kong, Wenchang Zhang,

Chao Yang, and Chunfang Liu. 2018. “A Survey on
Deep Transfer Learning.” In Lecture Notes in

Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Vol. 11141 LNCS.
doi:10.1007/978-3-030-01424-7_27.

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent single-
blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-109-2021 | © Author(s) 2021. CC BY 4.0 License.

5 of 5

