

Automatic Georeferencing of Topographic Map Sheets Using

OpenCV and Tesseract

Mátyás Gede a,
*, Lola Varga a

a Institute of Cartography and Geoinformatics, ELTE Eötvös Loránd University – saman@map.elte.hu, vargalola24@gmail.com

* Corresponding author

Abstract: The authors developed a pipeline for the automatic georeferencing of older 1 : 25 000 topographic map sheets

of Hungary. The first step is the detection of the corners of the map content, then the recognition of the sheet identifier.

These maps depict geographic quadrangles whose extent can be derived from the sheet ID. The sheet corners are used as

GCPs for the georeference.

The whole process is implemented in Python, using various open source libraries: OpenCV for image processing,

Tesseract for OCR and GDAL for georeferencing.

1147 map sheets were processed with an average speed of 4 seconds per sheet. False detection of the corners is

automatically filtered by geometric analysis of the detected GCPs, while the sheet IDs are validated using regular

expressions. The error of corner detection is under 1% of the sheet size for 89% of the sheets, under 2% for 99%. The

sheet ID recognition success rate is 75.9%.

Although the system is finetuned to a specific map series, it can be easily adapted to any other map series having

approximately rectangular frame.

Keywords: automatic georeferencing, OpenCV, Python, Tesseract, GDAL

1. Introduction

Old maps are great source of information about the past.

This particularly true for map sheets of accurate country

surveys: since the end of the 19th century, mapping

methods became accurate enough to get reliable positional

information, while the introduction of standardized map

legends facilitate efficient information extraction. The

information retrieved can be used in studies needing time

series of georeferenced data such as landscape change or

urban growth analysis.

Using these maps in GIS environment requires their

accurate georeferencing. While it is quite straightforward

for one map sheet, georeferencing a whole series of map

sheets may take tremendous time. The authors’ goal was

to automatize this job using open source computer vision

tools.

1.1 Similar research

There are several previous projects aiming automatic

georeferencing of maps. Jatnieks (2010) developed a

QGIS plugin called MapSheetAutoGeoRef which –

although makes mass georeferencing much faster – is only

a semi-automatic approach. The user has to manually mark

the sheet conrers, and a grid reference data source is also

required.

Rus et al. (2010) used radon transformation for extracting

the map coordinate grid lines and used the grid

intersections as ground control points (GCPs), deriving

their projection coordinates from the sheet identifier

number. A similar approach is presented by Herold et al

(2011) although rather little details are given about the

processing steps and the software used.

Titova and Chernov (2009) determined the position of the

map frame first, and then tried to detect local cross marks

repeated throughout the map; both detections were

performed using pattern matching. Coordinate information

was supplemented based on the sheet ID, which was part

of the file names.

The solutions presented in this paper have similarities to

the ones above, but there are important differences as well:

only open source software was used; the frame detection

is based on Hough transformation and is refined by a

simple convolutional filter to locally detect corners of

thick frames; and the sheet ID detection is performed by

OCR (although the sheet ID is also available in the file

names of the test map series – this information was used

for evaluating the accuracy of OCR). GCPs of

georeferencing are the four corners of the map sheets

whose coordinated can be derived from sheet ID. Jatnieks’

(2010) approach is used to embed georeference data as

GCPs in the intermediate GeoTIFF raster.

1.2 Software and hardware environment

The software implementation was realized in Python 3.7,

using Numpy 1.18.1, OpenCV 4.1.2, GDAL (OSGeo

version 3.1.4) and Tesseract OCR (pytesseract), version

4.1.0. The test computer is a 64-bit Windows 10 desktop

computer having i7-4770 CPU, 16GB RAM and Nvidia

GeForce GTX 1050 graphical card.

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-38-2021 | © Author(s) 2021. CC BY 4.0 License.

1.3 Maps processed

The methods described below was tested on the 1950–52

1 : 25 000 military topographic map series of Hungary

(Figure 1). Map sheets are bounded by 1/8° by 1/12°

geographic quadrangles; the boundary latitudes and

longitudes can be calculated based on the sheet ID. The

map frame consists of a thicker outer and a thin inner

frame, the total frame width is 10mm. The sheet ID is right

above the top frame, centered (Figure 2). The maps are in

the Gauss–Krüger projection system, using the Pulkovo

1942 datum on Krasovsky ellipsoid.

Figure 1. Sample map sheet.

Figure 2. Map frame structure (left) and location of the sheet ID

(right)

2. Processing steps

2.1 Corner detection of map sheets

The first step of image processing was the extraction of

“blackish” pixels from the RGB image. The frame and the

sheet ID are both printed in black, which appears as dark

grey on the scanned image. Its extraction was performed

by creating a mask of those pixels where the difference of

the R, G, B channels is under a specific limit (25%) and

the average of them is under another one (50%). These

limits were determined by experiments; other map sets

may require different settings. The result of the filtering is

a binary mask (Figure 3).

Figure 3. Result of black masking

The next step is straight line extraction on this mask.

OpenCV provides a convenient method using the

probabilistic Hough transformation for this task (OpenCV

2020). As only the long lines of the frames are really

needed, the parameters of line extraction were set to find

only lines longer than the quarter of the image width.

(Although frame lines are much longer than that, in reality

the print is often imperfect and there are gaps so if the

minimum line length is set too high, sometimes the frame

lines are also filtered out.)

Based on the azimuth of the lines, the nearly horizontal and

the nearly vertical ones are extracted into separate lists.

The angular tolerance at this step is set to 5 degrees in order

to successfully process map sheets that were scanned with

minor rotation.

The leftmost and the rightmost vertical lines define the

outer side frames, while the topmost horizontal one is the

outer top frame. The intersections of the side frames and

the top frame define the rough position of the outer corners

of the map sheet.

Detection of the bottom frame proved to be troublesome

for this map series as there are long scale bars below it, and

the authors were unable to find a set of parameters for

Hough line extraction that reliable detects the bottom

frame but not the scale bars. Therefore, after finding the

top corners and determining the actual map frame width in

pixels, this information can be used to estimate the rough

position of the bottom frame and lines much lower than

that are dropped before finding the bottommost horizontal

line. Once we have the bottom line, the bottom outer

corner positions are also calculated as the intersections of

the frame lines.

The outer corner positions are refined by applying a

convolutional filter using the kernel seen on Figure 4 in the

neighborhood of the rough corner positions. The location

of the maximum value after convolution gives the exact

position of the corner.

Figure 4. Kernel used for refining top left corner position.

Kernels for other corners are mirrored versions of this.

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-38-2021 | © Author(s) 2021. CC BY 4.0 License.

2 of 4

Once the outer corner positions are known, it’s possible to

calculate the exact resolution of the raster image. The inner

height of the map can be calculated as the length of an 1/8°

meridian section divided by 25 000 (the map scale), which

gives 372mm. As the frame width is 10mm, the resolution

(in mm/pixel units) can be calculated as the pixel distance

of the top and bottom frames divided by 392.

Using the raster resolution, the rough position of the inner

frames can also be estimated (10mm horizontally and

vertically from the outer frames). These positions are also

refined by locally searching for intersecting horizontal and

vertical lines. Figure 5 shows the results of corner

detection on a sample sheet.

Figure 5. Estimated (red and purple) and refined (blue and

orange) positions of the outer and the inner corners of a map sheet

2.2 Detecting map sheet ID

The map sheet ID is located centered above the top frame.

As it is followed by the sheet name (name of the largest

settlement on the map), its horizontal position is varying

from sheet to sheet. Therefore a larger part of the image is

cropped and processed by pytesseract’s image_to_string

function (Zelic & Sable, 2021). The resulting text is then

tested against a regular expression in order to extract the

sheet identifier only. The 1 : 25 000 map IDs follow the

{letter}-{number}-{number}-{letter}-{letter} pattern; the

first letter and number determine a 6° by 4° quadrangle.

This quadrangle is divided into 12x12 (144) small

quadrangles; the second number identifies one of these.

The following letter is one of A, B, C, D and specifies one

quarter while the last letter (from a, b, c, d) again identifies

a quarter (War Department and Bolin, 1946). Figure 6

shows and overview map of Hungarian sheets.

Figure 6. Overview map of Hungarian Gauss–Krüger sheets.

Courtesy of Institute of Cartography and Geoinformatics, Eötvös

Loránd University

2.3 Georeferencing

With the sheet ID and the map corners detected we have

all information required for georeferencing the map. The

Python bindings of GDAL were used for this task. First the

bounding latitudes and longitudes are calculated from

sheet ID. Then the coordinates of the map corners are

transformed to Gauss–Krüger projection (keeping in mind

that the actual projection zone depends on the longitude).

GCP information with the projected coordinates is merged

to the unmodified raster image using GDAL’s Translate

function into an intermediate GeoTIFF file.

Although the result is already a georeferenced raster,

additional steps are required to produce a seamless mosaic

of map sheets. The map is transformed to

latitude/longitude projection and is cropped by the

bounding latitudes and longitudes. (In this projection the

geographic graticule appears as horizontal/vertical lines,

which makes this cropping easy.) The cropped,

georeferenced maps are saved as GeoTIFF images using

GDAL’s Warp function (Warmerdam, Rouault et al.,

2021). Figure 7 shows the seamless mosaic of

georeferenced sheets. The few holes visible are places of

sheets that are missing from our collection.

Figure 7. Seamless mosaic of georeferenced sheets in displayed

in Google Earth.

3. Results

The solution presented above managed to find map corners

on all the 1147 map sheets it was tested. The average

processing time of one sheet was around 4 seconds on the

testing computer. Line detection was the most time-

consuming part, while projection transformation and

saving the final georeferenced image war surprisingly fast,

requiring about 0.1 seconds per sheet. For practical

reasons, two separate scripts were created: one for corner

and sheet ID detection and another one for georeferencing.

3.1 Evaluating corner detection accuracy

The accuracy of detected map corner positions were

checked by simple mathematical methods. There ratios are

calculated: the ratio of the length of left and right frames;

the ratio of the length of top and bottom frames, finally the

ratio of the length of horizontal and vertical frames

corrected by the cosine of the latitude. These ratios should

optimally be 1; their error is the difference from 1. The

corner detection error of a sheet is described by the largest

of the three differences. The histogram chart (Figure 8) of

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-38-2021 | © Author(s) 2021. CC BY 4.0 License.

3 of 4

these errors indicates that the displacement is typically

0.5%, which, considering the 372mm sheet height, is under

2mm.

Figure 8. Histogram of corner detection error

It is worth noticing, that a considerable part of these errors

is caused by the fact that during the production of these

maps the geodetic base of the survey was changed (from

the German system based on the Bessel ellipsoid to the

Soviet one based on the Krasovsky one). The sheets north

of 46°40’ and east of 20°30’ were compiled in the soviet

system, therefore those sheets that are on the border of the

two systems have non-standard boundaries.

3.2 Evaluating OCR accuracy

As the file names of the scanned maps already contained

the sheet IDs, it was a great opportunity to easily test the

accuracy of OCR. For approximately quarter of the sheets

(261 out of 1147) there was no match for the testing regular

expression, mostly because some characters of the ID were

not digitized. When the regular expression had a match, it

was usually correct, or only had minor, automatically

correctable errors: e.g. the last character was recognised as

an ‘e’ while only ‘a’, ‘b’, ‘c’, ‘d’ is allowed there, which

means it should have read as a ‘c’. There were only 16

cases (1,4%) where the detected sheet ID was misread

beyond the possibility of automatic correction.

It is worth mentioning that Tesseract OCR was used with

its default settings, which means that text recognition

accuracy most probably can be improved by finetuning the

settings of OCR, and/or training it on the fonts used on the

maps.

4. Conclusions

The results show that the method described above is

suitable for automatically georeferencing large amount of

scanned topographic map sheets. At present the weakest

point is the accuracy of sheet ID detection, but it can surely

be improved by refining OCR settings (or training OCR on

the font the given map series is using). Additionally, as the

sheet id had been usually assigned to the raster image

during the scanning process, in those cases sheet ID

detection is not a crucial step of the method.

By minor adjustments, this solution can be used on any

topographic map series where

• the sheet ID is either available or machine

readable,

• the map frame is rectangular, and

• the coordinates of the sheet corners can be

calculated based on the sheet ID.

5. Acknowledgements

EFOP-3.6.3-VEKOP-16-2017-00001: Talent Manage-

ment in Autonomous Vehicle Control Technologies – The

project is supported by the Hungarian Government and co-

financed by the European Social Fund.

6. References

Herold, H., Roehm, P., Hecht R. and Meinel, G. (2011).

Automatically georeferenced maps as a source for high

resolution urban growth analyses. In: Proceedings of the

25th ICA International Cartographic Conference, July 3

- 8, 2011, Paris, France.

Jatnieks J. (2010) Extended Poster Abstract: Open Source

Solution for Massive Map Sheet Georeferencing Tasks

for Digital Archiving. In: Chowdhury G., Koo C., Hunter

J. (eds) The Role of Digital Libraries in a Time of Global

Change. ICADL 2010. Lecture Notes in Computer

Science, vol 6102. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-13654-2_33

OpenCV (2020). Open Source Computer Vision

documentation. https://docs.opencv.org/4.1.2/

Rus, I., Balint, C., Craciunescu, V., Constantinescu, S.,

Ovejanu, I., Bartos-Elekes, Zs. (2010). Automated

Georeference of the 1:20 000 Romanian Maps Under

Lambert-Cholesky (1916–1959) Projection System

Titova, O.A., Chernov, A.V. (2009). Method for the

automatic georeferencing and calibration of cartographic

images. Pattern Recognit. Image Anal. 19, 193–196.

https://doi.org/10.1134/S1054661809010325

War Department (USA) and Bolin, R. L. , Depositor

(1946) "Handbook on USSR Military Forces, Chapter

XII: Maps, Conventional Sign, and Symbols" (1946).

DOD Military Intelligence. 29.

http://digitalcommons.unl.edu/dodmilintel/29

Warmerdam, F., Rouault, E. et al., (2021) GDAL

documentation. https://gdal.org/

Zelic, F, Sable, A. (2021) A comprehensive guide to OCR

with Tesseract, OpenCV and Python. 2021.

https://nanonets.com/blog/ocr-with-tesseract/

Proceedings of the International Cartographic Association, 4, 2021.
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-38-2021 | © Author(s) 2021. CC BY 4.0 License.

4 of 4

https://doi.org/10.1134/S1054661809010325
http://digitalcommons.unl.edu/dodmilintel/29

