
 

Effect of Geospatial Uncertainty Borderization on Users’ 

Heuristic Reasoning 

Lorenzo Libertini  a,
*, Ekaterina Chuprikova b, Liqiu Meng c 

a International M.Sc. of Cartography, Chair of Cartography, Technical University of Munich – lorlibe@libero.it,  
b Centre for Sensing Solutions, EURAC research – ekaterina.chuprikova@eurac.edu 
c Chair of Cartography, Department of Aerospace and Geodesy, Technical University of Munich – liqiu.meng@tum.de 

* Corresponding author 
  

Abstract: A set of mental strategies called "heuristics" – logical shortcuts that we use to make decisions under uncertainty 

– has become the subject of a growing number of studies. However, the process of heuristic reasoning about uncertain 

geospatial data remains relatively under-researched. With this study, we explored the relation between heuristics-driven 

decision-making and the visualization of geospatial data in states of uncertainty, with a specific focus on the visualization 

of borders, here termed "borderization". Therefore, we tested a set of cartographic techniques to visualize the boundaries 

of two types of natural hazards across a series of maps through a user survey. Respondents were asked to assess the safety 

and desirability of several housing locations potentially affected by air pollution or avalanches. Maps in the survey varied 

by "borderization" method, background color and type of information about uncertain data (e.g., extrinsic vs. intrinsic). 

Survey results, analyzed using a mixed quantitative-qualitative approach, confirmed previous suggestions that heuristics 

play a significant role in affecting users' map experience, and subsequent decision-making. 
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1. Introduction 

Extensive research in uncertainty visualization has 

provided evidence of the key role of uncertainty in 

information communication and comprehension. Starting 

from the early categorization of MacEachren (1992) 

several authors (e.g., MacEachren et al. 2005; Griethe & 

Schumann, 2006; or Senaratne & Geharz, 2007) have 

proposed different taxonomizations and guidelines on how 

to choose best visual variables to show uncertainty based 

on the data type and data quality issue. Different variables 

have also been tested and ranked according to their 

intuitiveness for users (MacEachren et al., 2012). 

Kinkeldey et al. (2014) later reviewed and condensed these 

findings into the uncertainty visualization cube, 

classifying uncertainty visualization techniques according 

to the three dichotomies of intrinsic/extrinsic, 

coincident/adjacent, and static/dynamic.  

The choice of visualization techniques also influences 

users' perception and decisions, as it can support accurate 

judgement by mitigating cognitive biases and, on the other 

hand, potentially generate a faulty interpretation of the data 

(Zuk et al., 2006). Users tend to perceive realistic 

(Smallman & St. John, 2005) or high-quality 

visualizations (McCabe & Castel, 2008) to be more 

accurate and trustworthy. Perceptually salient 

visualizations can increase decision accuracy (Fabrikant et 

al., 2010) but also turn users' attention away from other 

information that might be equally relevant for the task to 

be solved (Stone et al., 1997). Furthermore, visual 

variables are often associated with certain intuitive 

meanings and can cause systematic errors in judgements 

when used counterintuitively in visualizations (Tversky et 

al., 2011).  The choice of visual variables is thus crucial to 

produce cartographic outputs that feel intuitive and easy to 

understand for users (MacEachren et al., 2012). 

In this context, MacEachren (2015) stated that the research 

on heuristics is crucial for understanding how uncertainty 

visualization techniques affect map perception. First 

introduced by Tversky & Kahneman (1974), heuristics are 

a set of logical strategies that humans commonly employ 

to navigate through uncertain environments. These 

strategies allow us to save time and mental effort by 

ignoring unneeded information and subsequently help us 

form judgements and decisions that are effective in most 

contexts. Tversky & Kahneman originally proposed three 

types of heuristics: 

 Representativeness: the belief that an event may 

be more likely to happen if it fits the mental 

stereotype we associate with that event; 

 Availability: the tendency to assess the 

probability of an event based on how easily we 

can remember instances of similar events; 

 Adjustment to an anchor: the tendency to make 

decisions by only considering the first piece of 

information we have received. 

The role of heuristics in human reasoning has been 

explored in several knowledge domains. However, the 

relation between uncertainty visualization and human 

reasoning remains underexplored, particularly in a 

geospatial context (Kinkeldey et al., 2017). Several 

scholars (e.g., Zuk & Carpendale, 2007; Chuprikova et al., 

2018) have made calls for a more in-depth investigation on 

how cognitive biases impact users' reasoning under 

geospatial uncertainty. 
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2. Related work 

In a study by Hope & Hunter (2007), users were asked to 

choose between different land areas with several 

suitability levels and associated data uncertainty to decide 

where to build an airport. Their response patterns showed 

a tendency for loss aversion, echoing previous findings 

from Tversky & Kahneman (1979), which argued that 

humans tend to minimize losses rather than avoiding risk 

per se. Other studies have noted that visualization 

techniques can trigger visuospatial biases by convoying 

users' attention on certain map elements; these biases may 

or may not improve final decisions' accuracy (Padilla et al., 

2018). Kübler et al. (2019) have acknowledged that the 

effects of uncertainty visualizations on decision outcomes 

might often be unpredictable as they depend on the users' 

personal background and other situational factors.  

Relevant cases for our study are the containment and the 

distance heuristic, i.e., the tendency to view two points 

inside and outside a bordered area as thematically distinct 

(Padilla et al., 2018), with the misperception increasing at 

increasing distance from the border itself (Padilla et al., 

2018). Discrete boundaries in a map are intuitively 

associated with a change in semantic meaning, regardless 

of what the border actually represents (Fabrikant & 

Skupin, 2005). In a study about users' interpretation of 

positional uncertainty of a point, McKenzie et al. (2016) 

found that the containment heuristic is more likely to be 

triggered when the probability distribution of the point 

location is visualized with a crisp border rather than a 

"fuzzy" one. Cox et al. (2013) have analyzed users' 

response to the so-called cone of uncertainty, used by the 

American National Hurricane Center to map storm track 

predictions across the US. The cone's borders only show 

the area where 2/3 of storm tracks are likely to fall into; 

however, the authors of the study found that map-readers 

consistently misinterpret the visualization by wrongly 

judging points outside the borders as completely safe. This 

is consistent with the concept of deterministic construal 

error as outlined by Padilla et al. (2018). Ruginski et al. 

(2016) tested several alternative views of the cone of the 

uncertainty, concluding that ensemble views and fuzzy 

borders are likely to mitigate the containment heuristic 

compared to the original visualization. 

3. Methods 

3.1 Concept and general design 

This study aims to investigate how map-readers use 

heuristics to reason upon geospatial data under 

uncertainty, with a specific focus on the issue of 

"borderization" – the visualization of borders – in the 

context of natural hazard maps.  

The first challenge is to identify objective criteria to detect 

heuristics use: due to their abstract and subjective nature, 

a structured methodological framework to study heuristics 

has yet to be fully established (Gigerenzer & Gaissmaier, 

2011). Therefore, we first use an initial tentative list of 

assumptions as detection criteria. We then select two types 

of natural hazards suitable for the study: levels of PM10 

(an air pollutant) and risk of avalanches. Both hazards are 

usually known by the general public, and the question of 

how to visualize their borders is not trivial due to the 

physical characteristics of these phenomena. 

The design concept for the study aims to create several 

visualizations of PM10 and avalanche risks across a 

certain section of space, with several housing locations 

overlaid on the map at varying levels of risk. The maps 

also include information about areas with high data 

uncertainty. We then developed an online survey in which 

we asked users to rate the desirability and safety of each 

housing location, along with their levels of confidence in 

their choices. Users also provided free statements to 

further explain the motives behind their ratings. Results are 

analysed using a mixed qualitative-quantitative approach. 

3.2 Case studies 

For the PM10 maps, we use point data of average daily 

PM10 concentrations in 2017 from urban background 

stations as provided by the European Environmental 

Agency. These data cover more than 2,000 locations 

across Europe. Due to the uneven geographic distribution 

of the points, they also offer a certain degree of uncertainty 

useful for this research. We selected a section of North-

western Italy as the study area, as it shows large variations 

in PM10 levels within a relatively narrow space. To build 

the maps, we perform a Kriging interpolation on ArcMap 

10.8, using the in-built function for Empirical Bayesian 

Kriging. This method is advantageous for this study as it 

provides the error estimate, i.e., the likelihood of the 

interpolation to be correct in any given point. The results 

of Kriging interpolation are then visualized using four 

different "borderizations" (see Fig. 1):  

                    
                                    a.                             b.  

                    
                                   c.                             d.  

Figure 1: The four PM10 "borderizations". a: single crisp 

border, b: layered crisp border, c: limited fuzzy border, d: total 

fuzzy border. 

- single crisp border: a visualization showing an area with 

high PM10 concentration (defined as an area where yearly 

PM10 averages exceed the level of 20 μg/m3, which has 
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been deemed as safe for human health by the WHO), 

colored in bright red and delimited by a single line as a 

discrete border. The space in this "borderization" is 

therefore dichotomic, as values outside the high-risk area 

have no assigned class; 

- layered crisp border: a visualization where the study area 

is divided into three classes of risk, from high (more than 

20 μg/m3) to moderate (between 10 and 20 μg/m3) to low, 

each delimited by a single line and colored with 

progressively lighter shades from red to pink; 

- limited fuzzy border: a "borderization" where the border 

of the high-risk area, instead of one single line as in "single 

crisp border", is visualized through a fuzzy gradient 

transitioning from red to white; 

- total fuzzy border: a "borderization" that merges "layered 

crisp" and "limited fuzzy border" by extending the red-to-

white gradient across the whole area from high- to low-

risk.           

As previously described, we then added four housing 

locations (labelled from A to D) with varying levels of risk 

to the maps. The location distribution was linked to the 

position of the borders and the colors on the maps, with 

one location falling within the high-risk area and the area 

of data uncertainty, two falling within either one of the 

areas, and one outside both. (see Fig. 2) 

      
                            a.                                           b. 

Figure 2: Example of a PM10 map (layered crisp border) with 
extrinsic uncertainty (b) and without (a). 

 

In the second case study (avalanche risk maps), we 

selected a section of the small mountain valley of Saas 

Grund, Switzerland, using data from the Naturgefahren-

Hinweiskarten (eng. "Indicative maps for natural hazards") 

as provided by the Swiss Environmental Office. 

In contrast to the usual Naturgefahrenkarten ("Natural 

hazard maps"), Hinweiskarten only provide an overview 

of natural hazard risks across large areas, with a relatively 

low degree of detail and spatial accuracy, and usually do 

not include information about the intensity of natural 

hazards themselves. The avalanche risk is categorized into 

three levels, from high to low. We selected the high-risk 

area, Saas Grund, which comes in very close proximity to 

human buildings. As the original metadata do not provide 

any information on the positional error relative to the high-

risk area border, we arbitrarily assign it an uncertainty 

buffer of 100 m in both directions.  

Somewhat similarly to the PM10 maps, the high-risk area 

is visualized with three "borderizations": 

-a "fuzzy" border with a 100-m-wide gradient transitioning 

from the colored high-risk to the white non-high-risk area; 

-two "crisp" borders with a superimposed extrinsic 100-m-

wide layer to represent the uncertainty buffer. This layer 

was visualized using two different techniques: a textured 

area, as already experimented by Hegarty et al. (2010) in a 

similar context, and an opaque grey band to simulate a 

"foggy" layer as proposed by MacEachren (1992).  

Each map had two versions, with the high-risk area being 

alternatively colored in red or green, to investigate whether 

users would react differently to a high-risk area 

represented with a counterintuitive color such as green. 

Finally, we added five housing locations (labelled from A 

to E) to the maps, with one location lying fully inside the 

high-risk area, one fully outside, one still outside but close 

to the buffer, and two on the uncertainty buffer but inside 

and outside the high-risk area respectively. (see Fig. 3) 

      
Figure 3: "Fuzzy red" and "fuzzy green" avalanche risk maps. 

3.3 User test 

Sixty-one users (of which thirty-three females) with 

diverse ages and personal backgrounds took part in the 

study, designed as a public and fully anonymous survey on 

the platform SoSciSurvey provided by the Technical 

University of Munich. Firstly, we collected some 

background information about the respondents, such as 

age, gender, education, and expertise level with maps and 

natural hazard data. Each user is randomly assigned to one 

of two groups and presented with seven maps, four from 

the first case study and three from the second, so that the 

survey does not become excessively long but each user is 

still able to view every "borderization" once. Survey 

respondents were asked to rate the safety and desirability 

of all housing locations on each map, as well as the level 

of confidence in their rating choices, using a 10-point 

Likert-type scale whose results were coded as numbers 

from one (lowest safety or desirability) to ten. We then 

performed statistical testing to analyse variations in 

average ratings across different maps using the Wilcoxon-

Mann-Whitney test, which we deemed best suited for our 

case as we were comparing the averages of several pairs of 

non-normal distributions.  

Proceedings of the International Cartographic Association, 4, 2021.  
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-66-2021 | © Author(s) 2021. CC BY 4.0 License.

3 of 8



   

 

Additionally, we asked users to add brief explanations of 

the main motives behind their ratings under each map. We 

used these statements to look for certain keywords that 

might suggest using heuristics (e.g., words related to 

"contain") and checked whether their usage would match 

previous statistical results. To come up with a keyword 

count that is as objective as possible, we counted only the 

keywords in longer and more meaningful sentences that 

obviously hinted at the presence of heuristics – e.g., "C and 

D are located within the high concentration zone". 

Respondents were also presented with four pairwise map 

comparisons and asked which one is better suited to 

represent natural hazard risks. Finally, we asked users to 

rank several color shades according to their association 

with an intuitive idea of "risk". This had the goal to control 

for the potential presence of color-blind respondents, 

whose answers could alter survey results unexpectedly.  

4. Results and discussion 

4.1 Effects of "borderizations" on heuristics 

The point labels on both case studies are here reported with 

a fixed order from A (safest point) to D/E (least safe point), 

even though they were randomized in the survey. 

4.1.1. PM10 maps 

Users consistently ranked points from A to D with 

decreasing levels of desirability across all borderizations. 

In "single crisp border" without extrinsic uncertainty, 

where A and B were outside the high-risk area, A had a 

higher desirability rating than B and C higher than D. This 

suggested a distance heuristic being at play, as A and B, 

like C and D, were located inside the same risk category 

and users had no parameters other than distance from the 

border to tell apart their risk levels. Apparently, users 

perceived B as less safe than A because it was closer to the 

border of the high-risk area. The opposite was true for C 

with respect to D. Additionally, in the maps without 

extrinsic uncertainty, ratings for A decreased from "single 

crisp border" to the other visualizations. In contrast, those 

of B decreased from "single crisp border" to "limited fuzzy 

border". Conversely, the ratings of C and D increased from 

"single crisp border" to other "fuzzy borderizations". This 

suggests the presence of a containment heuristic: in fact, 

"fuzzy" borders seemed to reduce the perceived safety for 

"safe" points and increase it for the "unsafe" ones.  

This effect was also evident in the maps with extrinsic 

uncertainty. Ratings for A decreased in the two "crisp 

border" visualizations after introducing extrinsic 

uncertainty, even though A was located outside the 

uncertain area. This further indicates a distance heuristic, 

as A was closer to the border of the uncertain area than to 

the border of the high-risk area. Additionally, ratings for B 

decreased across all borderizations with extrinsic 

uncertainty compared to those without, while ratings for C 

showed an increase in "layered crisp border". It seems that 

due to a containment heuristic the ratings for B and C 

decreased and increased respectively after the introduction 

of the uncertain area, as they were both located inside it. 

However, the effect was stronger in the "crisp border" 

maps than in the "fuzzy border" ones, which might suggest 

that with a “fuzzy” border, users tended to rely more on 

the colors of the map rather than on the heuristics. 

Interestingly, in the visualizations with extrinsic 

uncertainty, ratings for A did not decrease from the "crisp 

border" maps to the "fuzzy border" ones, unlike in the 

maps without extrinsic uncertainty. Additionally, the 

standard deviation of the ratings for A remarkably 

increased in the "crisp border" maps after the introduction 

of extrinsic uncertainty. This seems to indicate that not 

only the extrinsic uncertainty layer increased the perceived 

risk in "safe" points such as A, but it also made rating 

choices less straightforward and increased variations in 

judgement among users. While users could easily assess 

risk levels of A using the containment and distance 

heuristics in the "crisp border" maps without extrinsic 

uncertainty, the same was no longer valid with extrinsic 

uncertainty. Similarly, ratings for B in the maps without 

extrinsic uncertainty decreased from "crisp border" to 

"fuzzy border". Still, they did not show the same decrease 

in the maps with extrinsic uncertainty. As previously 

mentioned, ratings for B decreased across all 

"borderizations" with extrinsic uncertainty compared to 

the same ones without. This further shows that uncertainty 

reduced not only the overall perceived safety for B, but 

also the effect of the containment heuristic that had made 

assessments relatively easy for B in the "crisp border" 

maps without uncertainty. (Fig. 4) 

 

 
Figure 4: Average ratings in "crisp" and "fuzzy border" maps 
before (top chart) and after introducing extrinsic uncertainty. 

Conversely, the introduction of uncertainty did not cause 

any significant decrease in C and D ratings, and the ratings 

for C increased significantly from "crisp border" to "fuzzy 

border" even if C was located in the uncertain area. This 
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suggests a pattern of loss aversion. C's potential gains after 

the introduction of uncertainty, meaning that C could 

potentially fall outside the high-risk category, outweighed 

the risks that uncertainty itself posed around C. 

Simultaneously, the introduction of extrinsic uncertainty 

only had a net negative effect for B, which was safely 

outside the high-risk area before.  

   A   B   C   D Conf. 

Single crisp 8,28 6,00 1,94 1,38  7,47 

with unc. 7,59 4,16 2,34 1,75  7,16 

Layered crisp 7,31 6,07 2,72 1,55  6,72 

with unc. 7,38 4,93 3,34 1,62  6,55 

Limited fuzzy 7,31 5,00 3,09 1,66  7,34 

with unc. 7,63 4,19 2,94 1,56  7,00 

Total fuzzy 7,24 6,07 4,10 2,21  6,86 

with unc. 7,21 5,14 4,34 2,34  6,28 

 Table 1: average ratings and confidence by borderization type.1 

        Rating  Value    p 

Before/after unc.     

Single crisp  6,00 4,18 386,5 <0,01 

Layered crisp 6,07 4,93 184,0 <0,01 

Limited fuzzy 5,00 4,19 316,0 <0,01 

Total fuzzy 6,07 5,14 190,5 <0,01 

Without unc.     

Single vs. limited 6,00 5,00 197,0 0,021 

Layered vs. total 6,07 6,07   90,5 0,839 

With unc.     

Single vs. limited 4,16 4,19 124,0 0,946 

Layered vs. total 4,93 5,14   68,0 0,433 

Table 2: results of significance testing for point B.1  

4.1.2. Avalanche maps 

In stark contrast to the PM10 maps, the avalanche maps 

showed relatively few significant patterns, mostly due to 

differences between the two groups of users rather than 

between different maps presented to the same sample.  

However, the distance heuristic was present in all maps, as 

ratings for points inside the same risk category (such as A 

and B) showed significant differences. A had a higher 

rating than B, which lied closer to the high-risk area; the 

same was true for D in respect to E. Even more tellingly, 

D and E had the same differences in ratings even in the 

"fuzzy border" and "crisp border" maps, despite D and E 

having the same background color in the "fuzzy border" 

maps. This further suggests that users intuitively felt safer 

in D than E, with no information to base their ratings on 

other than distance from the border of the high-risk area. 

Ratings for A and C did not show any differences between 

maps, while ratings for B only decreased in "Green with 

                                                           
1 Limited examples due to space constraints. For further data, 

please contact the authors or  visit cartographymaster.eu/wp-

content/theses/2020_Libertini_Thesis.pdf 

texture" compared to "Green with fog". As this effect only 

occurred in these two maps, it is hard to detect any 

significant heuristic being at play behind it. D was the 

point with the most considerable variations, showing a 

substantial increase in "green with texture" compared to 

"green with fog" and "fuzzy green", as well as in "red with 

fog" compared to "fuzzy red" although not between "red 

with fog" and "red with texture". Interestingly, ratings for 

E also increased significantly in "green with texture" 

compared to "green with fog". As both maps' ratings came 

from the same group of users, such difference cannot be 

attributed to structural differences between groups. 

Therefore, we hypothesized that the use of a textured layer 

to visualize uncertainty might have increased the 

perceived safety in "unsafe" points (D and E) when the 

high-risk area was shown in green. A similar effect can be 

seen for D in the maps in red, but only for "red with fog". 

This may suggest that, in the case of E, the strong effect of 

the red color used to visualize the background could have 

outweighed a possible counter-effect of increased 

perceived safety from the textured uncertainty layer. 

However, ratings for E in "green with texture" also showed 

a higher standard deviation than in the other maps; this 

may indicate that the modest effect of rating increase for E 

could have simply been due to a few uncharacteristic 

results skewing the average. 

However, the decrease mentioned above in ratings for B – 

located outside the high-risk area but inside the uncertain 

area – in "green with texture" compared to the other maps 

might suggest a modest effect of the containment heuristic, 

with an unsafe point (D) increasing and a safer one (B) 

decreasing in ratings. 

4.2 User confidence and personal characteristics 

Users reported significantly higher confidence for their 

ratings in the PM10 maps without extrinsic uncertainty 

than in the maps with extrinsic uncertainty. However, in 

the detailed breakdown by "borderization", the decrease in 

confidence was only significant in "single crisp border" 

and "total fuzzy" border.  

Interestingly, these were the "borderizations" with the 

highest and lowest reported confidence respectively. We 

hypothesized two different reasons for this behavior. In the 

case of "single crisp border", the decrease in confidence 

might have been because the map without uncertainty was 

completely dichotomic, therefore containment and 

distance heuristics made it easy to assess risk levels across 

the map by only using one border as a reference. The 

inclusion of the uncertainty layer introduced an element of 

doubt and complexity, disrupting the original heuristics-

driven perceptions. For "total fuzzy border", users may 

have already been confused by the subtle gradient 

encompassing the whole map, and the introduction of the 

new border of the uncertainty layer made it even more 

challenging to gauge risk levels. Users did not have any 

border to use as a reference to begin with, and the new 
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uncertainty layer also made it hard to base one's 

judgements on the background color. 

Once again, confidence in the avalanche maps did not 

show any significant patterns, apart from a decrease from 

"fuzzy green" to "red with fog". As the two maps appeared 

one after the other in the survey and point ratings between 

the two did not change, we believe it could have been the 

result of a small adjustment-to-an-anchor effect, with users 

applying in the second map the same ratings as in the first 

map but with less confidence. 

Among users' characteristics, we found that users with low 

levels of cartographic expertise also had lower confidence 

levels. Somewhat surprisingly, females reported lower 

levels of confidence than males and appeared to be more 

conservative in their ratings for all points across all maps. 

However, their rating patterns showed the same structure 

of their male counterparts regarding the use of heuristics 

and the differences between points. 

4.3 Open statements and pairwise comparisons 

Response patterns from open statements mostly seemed to 

confirm numerical findings. Keyword usage was most 

common in "single crisp border", with twenty-one 

occurrences in the maps without uncertainty and thirteen 

in those with uncertainty. Conversely, we could only find 

three and four occurrences in "total fuzzy border" before 

and after the introduction of uncertainty, respectively. 

Interestingly, keyword usage decreased with uncertainty in 

the "crisp border" maps, while the opposite happened in 

the "fuzzy border" ones. This suggests that while 

complicating the use of heuristics in the "crisp border" 

maps, the uncertainty layer introduced an element of 

simplification in the "fuzzy border" ones. However, in 

"total fuzzy border" the keyword usage was always low in 

both maps. (Fig. 5) 

 
Figure 5: Frequency of keyword usage by "borderization". 

 

A more in-depth analysis of the statements supports the 

hypothesis that "total fuzzy border" did, in fact, only 

increase confusion. A user wrote that "the subtle gradient 

makes it difficult to work out the differences", while 

another one reported that it was "hard to distinct [sic] the 

points quickly". Additionally, some users felt that the 

colored gradient covering the entire map increased the 

overall perception of a threat, thus triggering risk avoidant 

behaviors even in places that previously seemed safe. This 

might hint at the affect heuristic being at play. Conversely, 

users seemed to feel more comfortable with "limited fuzzy 

border": one claimed that this was the "best visualization 

for this topic, it shows the uncertainty", while another one 

wrote that "a more graduated scale gives [sic] more 

accurate information". Compared to "single crisp border", 

users also reported that "limited fuzzy border" seemed 

more intuitive to represent this particular type of natural 

hazard due to the physical nature of its boundaries. 

Open statements under the avalanche risk maps did not 

show significant patterns in keyword usage frequency; this 

was also aligned with numerical findings. However, users 

did consistently report that the green color felt somewhat 

inappropriate to represent a high-risk area: one user wrote 

"the color scheme associates with a positive event not a 

disaster thus it creates biases in my mind. But I was 

attentive to the legend". Extrinsic uncertainty produced 

more conflicting results: while users felt that the two types 

of extrinsic visualizations seemed less intuitive than a 

fuzzy gradient, they also helped decision-making by 

triggering distance and containment heuristics. 

At the same time, statements under the maps with extrinsic 

uncertainty seemed to hint at a risk aversion pattern, unlike 

the loss aversion seen in the PM10 maps. Users claimed 

that points lying on the uncertainty buffer "seemed" to 

become more at risk after introducing the extrinsic layer. 

Therefore, it seems that the introduction of extrinsic 

uncertainty increased the perception of a threat both in 

high-risk areas and in non-high-risk areas lying close to the 

border of the high-risk ones. However, numerical findings 

did not support these claims and average ratings hardly 

showed any detectable patterns in the avalanche maps. 

In the four pairwise comparisons, many users felt that 

"fuzzy red" was more intuitive than "fuzzy green" to map 

natural hazard risk. "Fuzzy red" was preferred over "red 

with texture" and "limited fuzzy border" over "single crisp 

border" for the same goal; this seems to confirm that a 

gradient is more effective than an abrupt border to 

communicate spatial information about natural hazard 

risks. However, two-thirds of users selected "layered crisp 

border" as more useful than "total fuzzy border". This 

might mean that, while a gradient may be the best option 

overall, users still need some sort of border to gauge risk 

levels accurately. (Fig. 6) 

 
Figure 6: Results from the four pairwise comparisons. 
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Finally, results from the color shades ranking once again 

showed that most users indeed associated red or darker 

shades with "higher risk" and green or lighter shades with 

"lower risk". A few users displayed completely atypical 

patterns, which might suggest that they were color blind. 

However, the average ratings remained mostly unchanged 

even after removing these uncharacteristic results.  

4.4 Summary of findings 

Survey findings showed evidence of a containment 

heuristic behind users' choices. Respondents assessed risk 

levels in the "crisp border" maps by treating the space 

dichotomically and clearly distinguishing points outside 

the high-risk area from those outside. "Fuzzy" borders 

appeared to introduce an element of nuance and doubt 

which seemingly made it harder to rely on this heuristic. 

Use of the distance heuristic was equally evident, as 

respondents seemed to rely on distance from a border area 

to evaluate different locations in terms of risk, in the 

absence of any other piece of information. However, the 

exact border used as reference was not always the same 

across all maps. 

Among the three original heuristics, availability did not 

play any meaningful role in users' choices. We did find 

evidence of the representativeness heuristic: map stimuli 

perceived as representative from the users, such as a red 

color or a fuzzy border, had a clear impact on the rating 

distribution. However, some non-representative elements 

were preferred over more representative ones that were not 

equally helpful to support judgement. Finally, the relative 

lack of significant results from the avalanche maps might 

have been due to the adjustment-to-an-anchor heuristic. In 

fact, users may have applied similar ratings as before 

simply because these maps were presented later than the 

others in the survey, and also because users might have 

become more aware of the study subject by then.  

When it comes to the effect of different "borderizations" 

on heuristics, we found that a "fuzzy" border could help 

reduce the use of simple heuristics compared to a "crisp" 

border by supporting complexity in judgements.  

The extrinsic uncertainty layer had somewhat ambiguous 

effects. While it seemed to aid decision-making in the 

"crisp border" PM10 maps, it mostly appeared to increase 

confusion in the "fuzzy" ones. In the avalanche maps, the 

extrinsic layers did not affect ratings significantly.  

Additionally, we found evidence from the open-ended 

statements and the shade ranking that certain colors felt 

more intuitive to represent natural hazard risk, therefore 

that their manipulation could help reduce heuristic use.  

Somewhat surprisingly, we also observed that female users 

appeared to be more conservative and less confident than 

males in their ratings. Further research on this issue could 

determine whether this behavior has any structural basis.  

Finally, the anonymous online survey proved to be an 

effective tool to carry out the study and uncover patterns 

in heuristics use, as respondents could provide genuine 

answers without any external pressure. We also found the 

simple and highly consistent survey structure ensured high 

answer comparability and was effective in maintaining 

users' focus for the whole duration of the survey. 

Randomization of point locations helped provide more 

truthful answers; however, the study could have benefitted 

from randomization of the map order.  

5. Conclusion 

With this study, we confirmed previous findings by 

demonstrating that map readers use several simple 

heuristics to guide their behaviors. Namely, we found that 

containment and distance heuristics were commonly used 

to assess the level of natural hazard risk across different 

points in space; this usage was more frequent with certain 

visualizations, such as "crisp" borders, than "fuzzy" 

borders. Additionally, our work contributed to the research 

of geospatial reasoning with further insights into how 

extrinsic uncertainty can affect map judgement by either 

triggering or mitigating heuristics. We also found solid 

evidence that the choice of background color can impact 

map perception and map-related judgements significantly. 

Overall, this study can serve as a reference to design 

heuristics-aware visualizations of boundaries and natural 

hazards, thus better support users in decision-making.  

Future research in the field may benefit from a more 

structured theoretical framework for objective criteria to 

detect heuristics use, as well as from increased 

interdisciplinary collaboration with cognitive science to 

explore new ways and techniques to facilitate the 

understanding of users' map-related reasoning processes. 
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