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Abstract: Landslide is a natural disaster that has caused great property losses and human casualties in the world. To 

strengthen the target prevention and management level, ZhaShui county, Shaanxi province, is selected as the research 

area to evaluate the landslide susceptibility. First of all, under the premise of considering the correlation, 10 evaluation 

factors closely related to landslide disaster (i.e., elevation, rainfall, rock group, slope, slope aspect, vegetation index, 

landform, distance to residential area, distance to road, distance to river system) are taken together with non-landslide 

points, which are selected under multi-constraint conditions to form a sample data-set. Secondly, the sample dataset is 

substituted into the Support Vector Machine (SVM) model optimized by firefly algorithm for training and prediction. 

Finally, the result map was partitioned according to the natural discontinuous point method, and the landslide 

susceptibility map was obtained. The results show that the model optimized by the firefly algorithm has higher accuracy, 

and the landslide susceptibility results are more consistent with the actual distribution of disaster points. 
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1. Introduction

China has a vast territory. Affected by plate movement, 

China's geological conditions and landforms are very 

complex, with mountainous areas accounting for nearly 70% 

of the territory area. The complex geological and 

topographic conditions in mountainous areas lead to a 

large number of geological disasters. According to the 

annual report on natural disasters issued by the Ministry of 

Natural Resources of China in 2020, a total of 7,210 

geological disasters occurred in the country in 2020, an 

increase of 26.8% compared with 2019 and 14.6% 

compared with the average annual average during the 13th 

Five-Year Plan period. Among them, 4,810 landslide 

disasters occurred, accounting for 66.71% of the total 

number of geological disasters. Due to the vast territory of 

China, the different geological and topographic conditions 

in different regions, it is difficult to evaluate the 

vulnerability of landslides. At the same time, the 

evaluation of the susceptibility of landslides in China is not 

perfect at present, and there is still a large room for 

improvement in the related research work of the 

vulnerability assessment. In the face of the increasingly 

severe challenges of landslide disasters, to reduce the loss 

of life and property caused by landslides to the people as 

much as possible, it is necessary to effectively evaluate the 

areas where landslide disasters occur frequently and make 

scientific predictions about the areas where landslides are 

likely to occur. As a scientific prediction method for the 

possibility of landslides, the final prediction results can 

provide an important scientific reference for landslide 

disaster warning and urban development planning, and 

have important practical application value (Nguyen et al., 

2019). 

In recent years, with the rapid development of Artificial 

Intelligence (AI) field, machine learning has been used by 

more and more researchers in the field of landslide disaster 

prediction. (Bui et al., 2019) (Roy et al., 2019) (Chang et 

al., 2019) (Sahin et al., 2020). Tran Van Phonga et al. 

(Phong et al., 2019) selected Support Vector Machine 

(SVM), Artificial Neural Network (ANN), Logistic 

Regression (LR) and Reduced Error Pruning Tree (REPT), 

and nine landslide condition factors were used to generate 

data sets for training and validation of the model. The 

results show that SVM is superior to all other methods, 

namely ANN, LR and REPT. The support vector machine 

model can effectively solve the problem of constructing 

high-dimensional data model under the condition of 

limited number of samples, and has good applicability in 

the field of landslide susceptibility evaluation. Therefore, 

this paper chooses this model as the vulnerability 

evaluation model. Aiming at the difficulty in selecting the 

hyperparameters of the support vector machine model, the 

firefly algorithm is introduced to optimize the model 

hyperparameters, and the optimized hyperparameter 

results are brought into the support vector machine. It is 

compared with the classic support vector machine model 

to verify the superiority of the optimization algorithm in 

this paper. 

2. Model and Methods

SVM model is a machine learning algorithm proposed by 

Vapnik. SVM combines two learning techniques, i.e.,Vap

nik-Cherbonenkis (VC) dimensional theory and statistical

 learning theory, and improves the generalization ability o

f learning machine by seeking structured risk minimizatio

n, so as to obtain good statistical rules in the case of relati

vely small statistical sample size. It is a widely used super

vised learning model (Nhu et al., 2020). Therefore, SVM 

model was selected as the vulnerability evaluation model 

in this paper. 
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Suppose there are two types of samples, including 

landslides and non-landslides in this study: 

    ( ) ( ) ( )1 1 2 2, , , , , , , { 1, 1}n

l lx y x y x y x R y  − +∣        (1) 

The general form of the classification function : 

                        ( )g x x b=  +                                (2) 

Linear classification surface can be described as: 

0x b + =                                   (3) 

In view of the requirement of the SVM model to correctly 

divide all samples, the restriction conditions are set as 

follows: 

( ) 1 0, 1, 2, ,i iy x b i l  + −  = 
              

 (4) 

When ( ) 1g x = , according to the Euclidean distance 

calculation formula, the classification interval d is equal 

to
2


. Regarding the maximum d required in the model, 

from another perspective, it is equivalent to the minimum

21

2
 . Combining the above two points to transform the 

optimal classification surface problem into a constrained 

optimization problem, can be written as: 

21
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2
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Introduce the Lagrangian function and rewrite the formula 

(5-6) as:  
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In the formula, 
i  is the Lagrangian multiplier vector. 

The partial differential equation is solved by KKT 

(Karush-Kuhn-Tucker) condition, The minimum value of 

formula (7) is obtained according to the following equation: 

1

1

0

0 0

l

i i i

i

l

i i

i

L
y x

L
y

b

 




=

=


=  =



 =  =






                   (8) 

According to the duality theory, the dual problem of the 

original problem (5-6) can be obtained: 
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Among them, 
i  is the corresponding Lagrangian 

multiplier. Equation (9-11) is also the convex quadratic 

programming problem, and the unique solution 
*

i  can be 

obtained by solving it. Substituting 
*

i  into equation (8) 

and equation (4) can obtain the coefficient *  and the 

classification threshold *b . So far, the optimal 

classification function expression can be obtained: 

 ( )* *

1

( ) sgn{( ) } sgn ,
l

i i i

i

f x x b y x x b 
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 
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The evaluation factor low-dimensional feature space is 

mapped into the high-dimensional feature space, and the 

kernel function is used instead of the dot product operation, 

so the convex quadratic programming expression (9-11) is 

changed to: 
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At the same time, the optimal classification surface 

function (12) is changed to: 
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1
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l

i i i

i
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In this case, this paper considers the balance between the 

correct division and the classification interval. For this 

reason, slack variables can be introduced to allow the 

possibility of misclassification to solve the nonlinear 

classification problem. 
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Fig 1. Technical route  

When solving nonlinear problems in classification or 

regression model, kernel function is crucial. Therefore, 

kernel function plays a very important role in SVM model 

(Li & Chen, 2020). The kernel function is selected 

according to the characteristics of nonlinear problem. 

When solving the nonlinear problem, SVM models with 

different kernel functions have different effects. Therefore, 

the appropriate degree of kernel function is also very 

important when dealing with nonlinear problems. In this 

paper, based on previous research results, radial basis 

kernel function (Li & Chen, 2020) was selected. To solve 
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the difficulty of kernel function parameter selection in 

support vector machine, firefly algorithm is introduced to 

optimize the selection of model hyper-parameters to 

ensure the applicability of model hyper-parameters. 

3. Experiment and analysis 

3.1 Sample dataset optimization 

The landslide hazard points data in the study area were ob

tained from the "Spatial Distribution Data of Geological 

Hazards"  of the Resource and Environmental Science Da

ta Center of the Chinese Academy of Sciences(http://ww

w.resdc.cn/data.aspx?DATAID=290). The data format is 

excel and vector shape file. The geological and lithologic

al data of the study area comes from the "Spatial Distribut

ion Data of Geological Lithology in China" of the Resour

ce and Environmental Science Data Center of the Chinese

 Academy of Sciences(http://www.resdc.cn/data.aspx?DA

TAID=307). The digital elevation model (DEM) data and

 residential point datas come from the results of the first n

ational census of geographic condition s of China. Road d

ata and water system data are public data-sets provided by

 OpenStreetMap. 

Based on the comprehensive collection of geological 

information and field investigation in the study area 

(Zhashui County, Shaanxi Province), this paper 

analysesthe geological environment and natural 

environment conditions in the study area, as well as the 

development characteristics and formation conditions of 

landslide disasters, and the distribution rule of each 

evaluation factor. First of all, according to the distribution 

of landslide disasters in the study area, 10 evaluation 

factors including elevation, rainfall, rock group, slope, 

slope aspect, vegetation index, landform, distance to 

residential area, distance to road and distance to river 

system were selected as input factors of the model. 

Pearson's correlation coefficient was used to test the 

correlation of the evaluation factors,We removed 

redundant evaluation factors, and used the evaluation 

factors that pass the correlation test as the final input 

factors of the model. 

In previous studies, the selection of “non-landslide points” 

samples are often subjectively inferred by researchers or 

randomly selected on susceptibility evaluation. Because 

newly developed landslide hazards usually occur in areas 

where landslide hazards have not occurred temporarily. If 

non-landslide point samples are directly selected in such 

areas, it is very likely that grid cells with landslide 

possibility will be mistakenly selected as non-landslide 

samples, and it cannot ensure that the selected "non-

landslide points" are truly "non-landslide points". "In the 

selection of non-landslide point samples, this study 

comprehensively considered the distance between the 

landslide point and the non-landslide point, and the 

distance between the generated non-landslide points. We 

constructed a negative sample selection method under 

multiple constraints to ensure that the landslide disaster in 

the area selected by the negative sample is not easy to 

occur, which ensures the accuracy of the negative sample. 

Finally, the same number of negative samples as the 

positive samples were selected to form the sample point 

data set. 

3.2 Vulnerability model construction 

The experiment was carried out in the MATLAB language 

environment, and the support vector machine model was 

selected as the vulnerability evaluation model. 70% of the 

sample points were randomly selected as the training data 

and 30% of the sample points were taken as the test data. 

When training and predicting the susceptibility evaluation 

model, due to the dimensional differences between 

different evaluation factors, there is an inner product 

problem in the kernel function, and the larger attribute 

value of the evaluation factor will be used in the 

calculation. The occurrence of anomalies will eventually 

lead to anomalies, affect the structure of the vulnerability 

evaluation model, and adversely affect the prediction 

results of the model. Therefore, before inputting the 

evaluation factor into the landslide susceptibility 

evaluation model, the dimension of the attribute value of 

the evaluation factor needs to be normalized. 

The evaluation result of the susceptibility evaluation 

model is a continuous value with a value range of 0 to 1. 

This value represents the probability of landslide disaster 

occurring in each grid cell in the study area, with a range 

from 0% to 100%. The evaluation value is the landslide 

susceptibility evaluation index (Abedini et al., 2019) (Lee 

et al., 2017). To obtain the susceptibility zoning map, it is 

necessary to discretize the susceptibility index. Finally, the 

probability map output by the model is divided into five 

categories according to the Natural breaks, i.e. very low 

susceptibility area, low susceptibility area, medium 

susceptibility area, high susceptibility area and very high 

susceptibility area. Finally, the landslide susceptibility 

evaluation zoning map of the study area is obtained. 

 

 
(a) 

 
(b) 

Fig 2. Landslide susceptibility zoning map 
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4. Conclusion 

The distribution areas of the high-incidence areas in the 

two results are similar. The high-incidence areas of 

landslide disasters in this region are mainly concentrated 

in the southeast area and spread to the surrounding areas 

along the valley. It can be seen from the results that the 

development of landslide disasters in this region is mainly 

affected by the complex terrain, landform and geological 

structure of the mountainous area. Specifically, the 

optimized model is more robust. The results demonstrate 

that more landslide points in the result figure optimized by 

algorithm in the southeastern part of the study area fall into 

the high-incidence area, while the result figure obtained by 

the unoptimized classic support vector machine model 

fails to accurately identify the region. It can be seen that 

the optimized model  prediction results are more accurate 

and more consistent with the actual distribution of 

landslide disasters. The prediction results have good 

practical value and will provide guidance for the 

subsequent disaster prevention and control. 
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