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Abstract: This study examines the spatial distribution of COVID-19 incidence and mortality rates across the counties in 

the conterminous US in the first 604 days of the pandemic. The dataset was acquired from Emory University, Atlanta, 

United States, which includes socio-economic variables and health outcomes variables (N=3106). OLS estimates 

accounted for 31% of the regression plain (adjusted R2= 0.31) with AIC value of 9263, and Breusch-Pagan test for 

heteroskedasticity indicated 472.4, and multicollinearity condition number of 74.25. This result necessitated spatial 

autoregressive models, which were performed on GeoDa 1.18 software. ArcGIS 10.7 was used to map the residuals and 

selected significant variables. Generally, the Spatial Lag Model (SLM) and Spatial Error Model (SEM) models accounted 

for substantial percentages of the regression plain. While the efficiency of the models is the order of SLM (AIC: 8264.4: 

BreucshPagan test: 584.4; Adj. R2 = 0.56)> SEM (AIC: 8282.0; Breucsh-Pagan test: 697.2; Adj. R2 = 0.56). In this case, 

the least predictive model is SEM. The significant contribution of male, black race, poverty and urban and rural dummies 

to the regression plain indicated that COVID-19 transmission is more of a function of socio-economic, and rural/urban 

conditions rather than health outcomes. Although, diabetes and obesity showed a positive relationship with COVID-19 

incidence. However, the relationship was relatively low based on the dataset. This study further concludes that the 

policymakers and health practitioners should consider spatial peculiarities, rural-urban migration and access to resources 

in reducing the transmission of COVID-19 disease. 
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1. Introduction 

SARS-CoV-19 otherwise known as Severe Acute 

Respiratory Syndrome Coronavirus 2019 was first 

reported on December 30, 2019, in Wuhan, China, as a 

pneumonia-related diagnosis (Xie et al., 2020).Several 

weeks later, The World Health Organization (WHO) 

officially tagged coronavirus "2019-ncov" as 2019 novel 

coronavirus and estimated its incubation period to be about 

2 to 14 days. The primary aim of the spatial analytical 

process is to measure geographic distributions, analyze 

patterns, map clusters, and model spatial relationships 

among observed variables. Hence, spatial analysis 

becomes vital in medical geography because diseases' 

distribution tends to be intrinsically linked with socio-

economic, political, and environmental conditions that 

affect susceptibility. However, mapping patterns of 

phenomena have provided tremendous advantages of 

observing hidden relationships among variables 

(Oluwafemi et al., 2013). The community transmission 

was first reported in February, 2020 (CDC, 2020: 

Desjardin, et al., 2020). It is worthy of note that confirmed 

cases of COVID-19 had been reported in every state in the 

U.S by mid- March 2020 (Schuchat, 2020). As at April 7th 

2020, the worldwide cases of COVID-19 has risen to over 

131 million cases, 2.85 million deaths and over 74.5 

million people have recovered from the virus (The New 

York Times, The COVID-19 Tracking Project, 2020). As 

of April, 7th 2021, in the US, the virus has infected 

30,732,250 million people and resulted in 554,579 deaths 

(The New York Times, The COVID-19 Tracking Project, 

2020). The major transmission route of COVID-19 is 

through respiratory droplets from close direct contact with 

symptomatic, pre-symptomatic or asymptomatic people, 

and indirect contact through objects, or aerosols over 

longer distances (Zhang, et al., 2020). The Basic 

Reproduction Number (R0), is a commonly used 

epidemiologic measure of transmissibility of an infectious 

agent. R0 will be greater than 1 during an outbreak and will 

drop to less than 1 as the outbreak subsides. This statistic 

can be used to estimate the proportion to be vaccinated 

within a population in order to control the spread of the 

infection (Delamater, et al., 2019). Across different 

regions of the U.S., the R0 ranged from 1.3 to 3.8 on March 

1, 2020 and from 0.64 to 1.1 on May 1, 2020, according to 

Rt.live.com website (Rt Live, 2020). Early research 

suggested that the average number of days from 

transmission of COVID-19 to case confirmation was 18 

(Backer, et al., 2020). According to Desjardins et al. 

(2020), COVID-19 estimated Ro equals 2.2 to 6.7 

depending on various sources. The challenge of COVID-

19 has been of global concern because of it's "unknowns" 
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and the impacts of its emergence on virtually all aspects of 

life. Early studies on the COVID-19 have suggested that 

preexisting health conditions, air pollution, and socio-

economic variables could be pointers to COVID-19 

Incidence and mortality (Petroni et al.;2020; Xie et al.; 

2020; Wu et al.; 2020 and Pansini and Fornacca, 2020). 

However, understanding the spatial distribution of 

COVID19 cases, and modelling variables that influences 

its transmission relies mainly on big data. The quality of 

the big data allows digital manipulations using spatially-

inclined software that allows exploratory spatial analysis. 

A number of studies have explored the relationship 

between COVID-19 transmission and socio-economic 

variables in New York City and Chicago, United States. 

Maroko et al. (2020) showed a relationship between 

COVID-19 transmission and socio economic and 

demographic characteristics. The authors affirmed certain 

socio-economic variables as predictors of COVID-19 

disease. Safray et al., (2020) adopted both global and local 

spatial correlation statistic to examine dependencies in US 

counties. They affirmed that race, and certain health 

outcomes are predictors of COVID-19 transmission. 

Traditional statistical models do not account for spatial 

dependence (Smirnov & Anselin, 2001; Anselin, 2003; 

Anselin, et al., 2006). When spatial dependence is present, 

Ordinary Least Squares (OLS) regression produces biased 

parameter estimates (Smirnov & Anselin, 2001). In order 

to mitigate this, spatial autoregressive models are used that 

uses Maximum Likelihood (ML) estimation and accounts 

for the presence of spatial dependence in the data. The 

Incidence of COVID-19 has been found to vary over space 

at the global, national, and local scales depending on the 

risk factors (Franch-Pardo et al., 2020; Desjardins et al., 

2020; Petroni et al., 2020; Adekunle et al. 2020 and 

MFF..Sobral et al., 2020). In particular, there is a notable 

geographical variation in the distribution of COVID-19 

cases across the US's counties (Desjardins et al., 2020).In 

addition, COVID-19 mortality also varies across counties 

in the US (Zhang and Schwartz, 2020). In the spatial 

autoregressive models, spatial dependence is incorporated 

using two different methods; either in a spatially lagged 

dependent variable or through the error term. The former 

method is known as a spatial lag model and the later as 

spatial error model (Anselin, 2003). In the case of 

unaccounted spatial error, regression will have inefficient 

results (Anselin, et al., 1996), potentially giving incorrect 

standard error, wrong significance, or wrong model fit. 

When the spatial lag term is not treated as an endogenous 

variable under a proper estimation method, it will produce 

biased and inconsistent results in the regression model 

(Anselin, 1988; Baltagi, et al., 2007; Fotheringham & 

Rogerson, 2008; Lee & Yu, 2010; Badr, et al., 2020). To 

address the inconsistent, inefficient, and biased results of 

traditional statistical models, We employed spatial 

autoregressive models to examine the effects of selected 

socioe-economic and health outcomes variables on 

COVID-19 cases in the contiguous U.S. over the months 

of March 2020 and August, 2020 using Emory University 

Datasets. 

2. Study Area  

The United States is one of the North American continent 

countries; it is believed to be the most powerful nation 

globally in terms of Gross Domestic Product (GDP). 

According to the United States Census Bureau 2019 

projection, the population is 329, 256,465 million, with the 

Capital city in Washington DC. The contiguous United 

States has 3,143 counties and 5 administrative regions 

(Figure 1). The land area has 3,796,725 square miles 

(9,833,517 square kilometers) with 50 states within the 

contiguous United States (ThoughtCo.). The temperature 

is mostly temperate, tropical in Florida, semi-arid along 

the Mississippi River, and arid in the southwest's Great 

Basin (ThoughtCo). This study area includes all counties 

in the contiguous United States, where COVID -19 

incidence and mortality data are available for the study 

period from January, 21 to September 16, 2020.  

 
Figure 1:  Study Area, Conterminous United States 

3. Dataset and Descriptive Statistics 

The secondary data was used for this study. The dataset 

comprises over 40 variables, which includes COVID-19 

cases count ( 7 and 14 days), mortality rate, COVID-19 

Incidence, Race (Black, White, Hispanic), % Male, % 

Female,  Household Income, Community Vulnerability 

Index, Population density, % Insured, % Uninsured, Age 

over 65, Poverty, Diabetes, Obesity among others. These 

datasets were acquired from Emory University COVID-19 

Health Equity Interactive Dashboard, sourced from 

government and non-government agencies (Table 1). 
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Table 1: Data Sources 

4. Data Summary 

The datasets used for this study were summarized and 

variable statistics were calculated using STATA 13.  The 

descriptive statistics for the explanatory variables were 

provided in Table 2. 

 

 

 

 

 

Table 2: Descriptive statistics of model variables 

Variable Obs Mean Std. Dev 

Pop. density 3106 269.7114 1808.224 

Male 3106 50.02443 2.671016 

Poverty 3106 15.61238 6.475496 

Diabetes 3106 10.3886 3.81996 

Obesity 3106 32.73374 5.74366 

Black 3106 50.02443 2.671016 

Caserate 

(Newcasqrt) 

3106 1095.914 328.0724 

 

4.1 Research Questions 

The study will provide answers to the following research 

questions; 

i. Does the COVID-19 occurrence shows spatial 

variation and spatial dependencies across 

counties? 

ii. What is the spatial effects that present in the 

datasets? 

iii. What is the relationship between COVID-19 

occurrences and selected socio-economic and 

health outcomes variables across US counties? 

4.2 Aim and Objectives of the study 

The aim of this cross-sectional study is to use the spatial 

analytical models to statistically investigate the spatial 

relationship between selected explanatory variables and 

COVID-19 transmissions with the view of solving public 

health problems and providing a framework for resources 

allocation to the deprived counties.  

The objectives of the study are to: 

i. to use Ordinary Least Square estimation as 

diagnostics tool to determine pattern of 

correlation and spatial dependence of COVID-

19 incidence across the counties;  

ii. to use spatial autoregressive models to explain 

the spatial relationship of between COVID-19 

case rate incidence and selected variables in the 

continental United States; 

4.2.1 Working Hypothesis 

The study sets to test the following hypotheses 

i. There is spatial variation and spatial 

dependencies in the COVID-19 incidence. 

ii. COVID-19 incidence variation can be 

statistically explained with selected socio-

economic and health outcomes variables. 

4.2.2 Spatial Analytical Procedure 

In order to isolate the real predictor variables that influence 

COVID-19 incidence was transformed by squaring the 

incidence variable. I subjected the data to stepwise and 

exploratory analysis. In this case, COVID-19 incidence is 

the dependent variable while other variables (population 

density, male, poverty, diabetes, black, obesity and both 

urban and rural counties were represented as dummy 

variables; 1 for urban and 0 for rural counties) were 

entered into the model as potential predictor variables 

(regressors).  

 Data Source 

1 Total 

COVID-19 

Cases 

The New York Times 

Coronavirus (Covid-19) Data in 

the United States 

2.  Total 

COVID-19 

Cases per 

100,000 

Derived from the New York 

Times Coronavirus (Covid-19) 

Data in the United States and 

Bridged-race population estimates 

by The National Center for Health 

Statistics 

3. Total 

COVID-19 

Deaths per 

100,000 

Derived from the New York 

Times Coronavirus (Covid-19) 

Data in the United States and 

Bridged-race population estimates 

by The National Center for Health 

Statistics 

4 Percent 

Positive 

The COVID Tracking Project  

5 Cases per 

100,000 

Persons by 

Race 

Derived from The COVID Racial 

Data Tracker and American 

Community Survey by the US 

Census Bureau 

6 % African 

American 

American Community Survey by 

the US Census Bureau 

7 % Hispanic or 

Latino 

American Community Survey by 

the US Census Bureau 

8 % American 

Natives 

American Community Survey by 

the US Census Bureau 

9 % Minority American Community Survey by 

the US Census Bureau 

10 % in poverty American Community Survey by 

the US Census Bureau 

11 % Uninsured American Community Survey by 

the US Census Bureau 

12 % Diabetes  CDC's Division of Diabetes Translation  
 

13 % Obesity  CDC's Division of Diabetes Translation  
 

14 %over 65 y/o American Community Survey by 

the US Census Bureau 

15 % Male American Community Survey by 

the US Census Bureau 

16 Socio-

economic 

Vulnerability 

CDC's Social Vulnerability Index 

data 2018 database 

17 Population  Bridged-race population estimates 

by The National Center for Health 

Statistics 

18 Population 

Density 

American Community Survey by 

the US Census Bureau 

19 Household 

Income 

American Community Survey by 

the US Census Bureau 

Proceedings of the International Cartographic Association, 4, 2021.  
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-79-2021 | © Author(s) 2021. CC BY 4.0 License.

https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
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https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
https://www.cdc.gov/nchs/nvss/bridged_race.htm#Newest%20Data%20Release
https://www.cdc.gov/nchs/nvss/bridged_race.htm#Newest%20Data%20Release
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
https://www.cdc.gov/nchs/nvss/bridged_race.htm#Newest%20Data%20Release
https://www.cdc.gov/nchs/nvss/bridged_race.htm#Newest%20Data%20Release
https://covidtracking.com/about-data
https://covidtracking.com/race
https://covidtracking.com/race
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.cdc.gov/diabetes/data/index.html
https://www.cdc.gov/diabetes/data/index.html
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://svi.cdc.gov/data-and-tools-download.html
https://svi.cdc.gov/data-and-tools-download.html
https://www.cdc.gov/nchs/nvss/bridged_race.htm#Newest%20Data%20Release
https://www.cdc.gov/nchs/nvss/bridged_race.htm#Newest%20Data%20Release
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/
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4.2.3 Spatial Weight Matrix 

We first characterized the spatial relationships and identify 

the neighborhood structure by defining who neighbors are 

among all observation in the dataset this was done by 

creating spatial weight matrix (Anselin, 2003; 

Fotheringham and Rogerson, 2008). The spatial weight 

matrix expresses the existence of a neighbor relations and 

quantifies neighborhood structure between observations 

using n x n matrix, W (Anselin, 2003). The spatial weight 

matrix were calculated using Queen contiguity binary 

weight matrix, which defines the neighbor as any spatial 

unit that shares a common edge or vertex using GeoDa  

1.18 software. The spatial weight is 0 if any two unit i and 

j are not neighbors and 1 if they are neighbors. The 

diagonal cells of a spatial weights are also represented by 

0 because a geographic units is not considered neighbor of 

itself (Anselin, 2003). The spatial weights matrix is row 

standardized (Equation 1), where the given weights, Wij, 

are divided by the row sum resulting in the sum of all 

weights to equal n, that is the total number of observations. 

(Anselin, 2003).  

Wij = 
𝑊𝑖

∑ 𝑤𝑖𝑗𝑛
𝑗=1

                                                            (1) 

4.2.5 Estimation method & Models adopted 

To establish a relationship between the isolated predictor 

variables and the dependent variable (COVID-19 case 

rate), I adopted  (Ordinary Least Squares estimates (OLS), 

Spatial Lag Model (SLM), Spatial Error Model (SEM)). 

For a start, I subjected the potential predictor variables to 

OLS regression in GeoDa 1.18 platform 

(geodacenter.github.io). The OLS is a regression method 

that investigates the relationships between a set of 

explanatory or independent variables and dependent 

variable and has the general form (Ward and Gleditsch, 

2018). 

𝑦𝑖= 𝛽0+ 𝑥1𝛽 + 𝜀𝑖                                                             (2)  

Where at county i, yi is the COVID-19 incidence, 𝛽0 is the 

intercept, 𝑥1 is the vector of the selected variables, 𝛽 is the 

vector of regression coefficient, and 𝜀𝑖  is a random error 

term. 

COVID-19 Case rater= b0 +b1pop densityi+b2 malei+b3 

povertyi+b4 diabetesi +b5 obesityi +b6 urban dummyi+𝜀𝑖 

                    

The outcome of the OLS regression was shown in Table 2 

and OLS residuals was squared and latter mapped (See 

Figure 2).  

4.2.6 Determining the Spatial Dependence 

To achieve the first hypothesis of the study, with the null 

hypothesis saying.There is spatial variation and spatial 

dependence in the COVID-19 infection cases. Moran’s I 

test which was captured in the OLS diagnostics for spatial 

dependence shown in Table 3 below indicated Moran’I 

value (0.4225, p< 0.00000) which implies clustering 

pattern and significant positive spatial dependence in the 

number of COVID-19 incidence across the counties in the 

U.S. Since Moran’s I statistic is diagnostic tool, this result 

actually pointed me to the direction to go for testing for the 

marginal effect of spatial dependence using Spatial Lag 

Model (SLM) or Spatial Error Model (SEM). 

4.2.7 Spatial Lag Model (SLM) 

According to Anselin, (2003); Ward and Gleditsch, 

(2018), assumes dependency between the dependent 

variables and incorporates spatial dependence into the 

regression model with a “spatially-lagged dependent 

variables”. SLM is denoted by: 

𝑦𝑖= 𝛽0+ 𝑥1𝛽+ 𝜌𝑊𝑖𝑦𝑖 + 𝜀𝑖                                                             (3)  

Where, 

𝜌 is the spatial autoregressive variable (i.e. the spatial lag 

parameter), and  𝑊𝑖 is a row of the matrix of spatial 

weights (that is, vector of the spatial weights).  The origin 

of equation 2 is rooted in the decomposition of the error 

term in equation 1 (Mollalo et al. 2020; Ward and 

Gleditsch, 2018). Here, W indicates the neighbors around 

county i and, thus, accounts for the influence of the 

predictor variables on the dependent variable at the 

boundaries around county i   (Mollalo et al, 2020; Anselin 

and Arribas-Bel, 2013). 

 

Figure 2: Residual Map of Spatial Lag Model 

4.2.8 Error Model (SEM) 

The SEM accepts that there is spatial dependence in the 

error term of OLS and decomposes the error term in 

Equation 1 above into two terms (𝜆𝑊𝑖𝜉𝑖 and 𝜀𝑖   below) 

(Anselin, 2003; Chen et al., 2016).  The general form for 

this model is: (Ward and Gleditsch, 2018). 

𝑦𝑖= 𝛽0+ 𝑥1𝛽+ 𝜆𝑊𝑖𝜉𝑖 + 𝜀𝑖                                                             (4)  

where 

𝜉𝑖 represents the spatial component of the error, λ connotes 

the existing correlation rate among the components, and 𝜀𝑖 

denotes the non-correlated spatial error term. The outcome 

of the SEM model was shown in Table 3 and SEM 

residuals was squared and latter mapped (See Figure 3b). 

The Spatial Lag residuals in the SEM latter were squared 

in GeoDa 1.18 platform so as to remove the negative signs 
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present in the residuals. Figure 3 below shows the SEM 

squared residuals. 

 

     Figure 3: Residual Map of Spatial Error Model 

The OLS result indicated a passing model for spatial 

regression which includes the selected independent 

variables as population density, male, poverty, black, 

diabetes, obesity and urban/rural dummies. Meaning that, 

only the seven variables were taken as the major predictor 

variables that influenced COVID-19 incidence across US 

counties between January 21 and September 16, 2020. For 

uniformity and consistency sake, we subjected the isolated 

predictor variables to the adopted regression models. For 

comparison sake, we implemented SLM and SEM on 

ArcGIS 10.7 GeoDa 1.18 (geodacenter.github.io) 

software. 

SLM and SEM were implemented on GeoDa 1.18 

platform. The performances of the models were 

comparatively evaluated based on the Breusch-Pagan, R2, 

Akaike Information Criterion (AICc) and also the 

coefficient of the selected independent variables were used 

to assess the relationships that exist among the variables  

across counties in the U.S. during the first eight months of 

the global pandemic. 

5.0 Analysis of Results 

The initial estimate summary result of OLS with the seven 

regressors  (population density, male, black, poverty, 

diabetes, obesity and urban/rural dummies) included in the 

estimation to measure the outcomes of COVID-19 

incidence across counties in the US in the first eight month 

(604 days) of the pandemic  is shown in Table 3. While 

COVID-19 incidence exhibited positive relationships with 

male, poverty, black, diabetes, obesity and urban/rural 

dummies poverty, diabetes, and obesity, it was negatively 

associated with population density (Table 3). The OLS 

estimates accounted for 31 % of the regression plain 

(adjusted R2= 0.31), this implies low R2. Although the  

OLS estimates presented a very low adjusted R2, it 

provides baseline for SLM and SEM. The interpretation to 

this is that almost 69% of the COVID-19 incidence across 

the contiguous US are caused by unknown variables to the 

model and likely due to the local variations which were not 

captured by the OLS models. The AIC value indicated 

9263 while the Breusch-Pang test for heteroskedasticity 

indicated 472.4 and multicollinearity condition number of 

74.25 This implies that selected regressor in the model are 

slightly correlated with the error term and demonstrated 

slight heteroskedastic nature.   

Table 3. OLS summary statistics for the COVID-19 

incidence predictor variables over contiguous US from 

January 21 to September 16 2020 

Variable Coefficient t-Statistic Std. Error P-Value 

Constant -0.285167 -0.526073 0.542067 0.59893 

Pop. 
Density 

-6.1886 -4.73397      1.30729e-
005 

0.00000 

Male 0.051927 5.08593 0.0102099 0.00000 

Black   0.0448007 22.7337 0.00197067 0.00000 

Poverty 0.0298329 6.58369 0.00453133 0.00000 

Diabetes 0.0271132 3.49449 0.00775885 0.00048 

Obesity 0.00608548 1.20764 0.00503915 0.22728 

Ur-

dummy 

0.350719 7.04554 0.0497788 0.00000 

 

The SLM and SEM presented slightly improved adjusted 

R2 values compared to OLS. This improvement was 

credited to the incorporation of spatial dependence into the 

regression analysis of the relationship between dependent 

variable and the predictor variables. The Rho (ρ) and 

Lambda (λ) were very significant for SLM and SEM 

respectively with α = 0.000. The adjusted R2 value 

computed for SLM (0.29) is slightly higher than that of 

SEM (0.28). Nevertheless, lower value of standard error 

was recorded for SLM. 

Table 4: SLM and SEM model statistical summary for 

COVID-19 mortality over contiguous USA 

Var

iabl
e 

 

Coefficient Z-value P-value 

SLM SEM SLM SEM SLM SEM 

Co

nst
ant 

-

2.12
74 

-

0.09
49 

-

4.8853
5 

-0.212748 0.000

00 

0.64493 

Pop

. 
den

sity 

-

3.72
17 

-

6.65
36 

-

3.5356
6 

-4.88053 0.000

00 

0.00000 

Ma

le 

0.05

1974
6 

0.05

1135
9 

6.3642

2 

6.09264 0.000

41 

0.00000 

Bla

ck 

0.01

8222
8 

0.02

8350
3 

10.490

7 

10.6954 0.000

00 

0.00000 

Pov

erty 

0.02

6596
7 

0.03

9904
8 

7.2739

3 

8.99422 0.000

00 

0.00000 

Dia

bet

es 

0.00

2817

01 

0.00

3109

37 

0.4526

16 

0.492253 0.000

00 

0.62254 

Ob

esit

y 

0.00

7956

13 

0.01

0299

4 

1.9739

5 

2.36401 0.650

83 

0.01808 

ur 
du

mm

y 

0.20
3761 

0.20
3913 

5.0914
9 

3.28577 0.048
39 

0.00102 

Rh

o 

0.62  0.017

7406 

 0.000

00 

 

La

md
a 

 0.67  0.0179011  0.00000 
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Generally, the SLM and SEM models accounted for 

substantial percentages of the regression plain. While the 

efficiency of the models is the order of SLM (AIC: 8264.4: 

Breucsh-Pagan: 584.4; Adj. R2 = 0.56)> SEM (AIC: 

8282.0; Breucsh-Pagan: 697.2; Adj. R2 = 0.56). In this 

case, the least predictive model is SEM.  

Table 5. Goodness of fit for the OLS, SLM and SEM 

regression models 
Criterion OLS SLM SEM 

Adj. R2 0.31 0.56 0.56 

AICc 9263 8264.4 8282.5 

Log Likelihood 

ratio test 

     - 1000.54 980.4703 

Breucsh-Pagan 
test 

472.47 584.43 697.23 

Jarque-Bera  863.60      -      - 

Moran’I error 0.4225      -      - 

Lagrange 
Multiplier (lag) 

1351.12      -      - 

Robust LM 
(Lag) 

67.7752      -      - 

Langrage 

Multiplier 
(error) 

1378.22      -      - 

Robust LM 

(error) 

94.87      -      - 

Langrage 

Multiplier 
(SARMA) 

1445.99       -      - 

Number of 

Observations 

3,106 3,106 3,106 

 

5.1 Regression analysis 

Based on the model evaluation given above, we adopted 

SLM. The results of the SLM regression analysis was 

presented in Table 5. Results showed that Male (0.05), 

Black (0.01) and Poverty (0.02), Diabetes, (0.002), 

Obesity (0.007) and urban and rural dummy variable 

(0.02) exhibited positive and significant relationship with 

COVID-19 incidence. On the other hand, population 

density (-3.721) demonstrated negative relationship with 

COVID-19 incidence across the study area in the first 604 

days of the pandemic. The three positively statistically 

significant variables in the SLM were also mapped to show 

the spatial variation across US counties between January 

21 and September 15 2020 (See Figure, 4,5,6). 

 

 
Figure 4: Spatial distribution of poverty at the county level 

 

 
Figure 5: Spatial distribution of Diabetes at the county 

level  

 

 

 
Figure 6: Spatial distribution of Obesity rate at the county 

level 

 

Discussion and Results 

In this study, I attempted to examine the influence of socio-

economic and health outcomes variables on COVID-19 

incidence across the counties of Contiguous USA. To 

achieve this, I selected 7 predictor variables (population 

density, male, black, poverty, diabetes, obesity and 

urban/rural dummies), I subjected the variables to stepwise 

and GIS-based exploratory and GeoDa-based regression 

analysis. Thus, we adopted spatial autoregressive models 

to establish an explanatory relationship between the 

dependent and predictor variables. The results provide an 
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insight to the goodness fit model among the two models 

that I considered. The study found SLM to be a better and 

most preferred model above SEM due to low AIC value 

and Breusch-Pagan test when compared to SEM.  The map 

of the squared Spatial Lag Residual indicated clustering 

around the centre of the map stretching north and south 

(Figure 2&3).This pattern reveals an evident cross-border 

spatial autocorrelation of the examined socio-economic 

and health variables.  

The significant contribution of male, black, race, poverty 

and urban dummies to the regression plain indicated that 

COVID-19 transmission is more of a function of socio-

economic and rural/ urban conditions rather than health 

outcomes. Although, diabetes and obesity showed positive 

relationship with COVID-19 incidence but the 

relationships was very low. However, available data 

showed that socio-economic and health conditions are also 

potent determinant of COVID-19 incidence across the 

counties of contiguous USA. In particular, the vulnerable 

and poor populations (i.e., black race, Hispanic, among 

others) had recorded more COVID-19 incidences in USA 

(Sun et al., 2020; Saffray et al., 2020).   

The results of the regression analysis showed that the 

prominent influential factors of COVID-19 incidence 

varied significantly across the counties of USA and this 

underscores the importance of spatial context in modelling 

of the outbreak of infectious diseases in space and time.  

All the outputs of this study revealed an interesting pattern 

that reflects cross-border spatial autocorrelation of events. 

Although, researchers had attributed the impacts of 

COVID-19 to the socio-economic disadvantages and 

inequalities arising from the pandemic itself (Ahmed et al. 

2020; Mollabo et al. 2020). I observed that the severity of 

the impacts of COVID-19 is a function of cumulative poor 

socio-economic, rural/ urban interactions and health 

conditions of the people. For instance, poverty ridden 

persons may be prone to underlying health conditions such 

as diabetes, obesity and upper respiratory tract infections 

these may be as a result of eating habits or inappropriate 

access to health care. These underlying health conditions 

in turn expose the sick individuals to complications when 

infected with COVID-19. Results of correlation analysis 

show that poor persons and are likely susceptible to the 

disease conditions. The study also showed that population 

density had negative effects on the COVID-19 incidence, 

though our study did not consider the quantity and quality 

of health-care providers as explanatory variables, the 

evaluation of the influence of such variables on COVID-

19 incidence would be highly revealing. In fact, Buerhaus 

et al. (2020) and Mollalo et al. (2020) had earlier 

highlighted the influence of quantity and quality of 

frontline health workers on COVID-19 incidence.  

In the same vein, researchers have earlier speculated that 

demographic characteristics could be influencing factors 

on COVID-19 incidence (Bayne et al. 2020; Mollalo et al. 

2020). The major challenge of this study has to do with the 

limitation inherent in the details of the available data. 

Mollalo et al. (2020) had earlier emphasized the setback 

associated with the coarse spatial granularity of the 

available COVID-19 data. Furthermore, we observed that 

more influencing factors could be identified, if the data 

were directly linked to the infected persons. The 

availability of such data would pave the way for the 

objective evaluation of the influence of some variables 

(such as underlying health conditions: obesity, diabetes, 

upper respiratory tract infections, migration patterns) on 

COVID-19 incidence. Gupta et al. (2020), Zheng et al. 

(2020) and Mollalo et al. (2020) had earlier identified the 

above underlying health conditions as potential factors that 

have the capacity to aggravate COVID-19 case rate.  

Perhaps the most influencing but the most difficult to 

capture is the influence of behavioral factors on COVID-

19 incidence. For instance, COVID-19 occurrence could 

be influenced by the willingness of the people to comply 

with rules and regulations regarding COVID-19 pandemic. 

Also, addiction to certain behaviors or lifestyles could 

expose some individuals or group of people to infections. 

Also, Mollalo et al. (2020) highlighted the possible 

influence of the dichotomy in enforcing COVID-19 

guidelines among the states. Therefore, there are still more 

to learn about the factors influencing COVID-19 

pandemic. 

 

Conclusions 

The study revealed the footprints of COVID-19 incidences 

across counties in contiguous United States between 

January 21 and September 16 2020. This study will help to 

mitigate the diffusion and the severity of the disease as 

well as creating early warning surveillances where 

attention should be focused. This study has shown 

statistically significant positive dependency in the 

COVID-19 incidence across counties in the United States. 

The study further confirms previous findings (Saffray et 

al., 2020; Maroko et al.,2020) that racial minorities, 

poverty, and migration pattern between rural and urban 

locations could explain COVID-19 incidences across US 

counties. The set of individuals are at high risk of severe 

COVID-19 infections and deaths which could be 

explained with poor living standards and poor access to 

healthcare facilities. This study further concludes that the 

policy makers should take into cognizance spatial 

peculiarities, rural-urban migration and access to resources 

in the transmission of COVID-19 disease in the United 

States. 
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