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Abstract: More and more cities try to encourage residents to cycle more. Therefore, governments are developing 
comprehensive bike maps to facilitate trip planning and increase the popularity of cycling. However, research on the topic of 
bike maps is rare and the versatility of possible features shown on a bike map makes these visually more complex than 
others. To understand how base maps and the display of cycling related features affect the visual complexity of bike 
maps and thus their effectiveness, we used different metrics (GMLMT, Subband Entropy, Edge Density, Feature 
Congestion, and Distinct Object-Type Counts) on four bike maps with four different visual complexity levels. We ran an 
eye-tracking experiment with 35 participants solving four different everyday tasks with these four bike maps. The findings 
suggest that adding more detail to base maps and displaying more cycling related features on a map resulted in a 
visually more complex bike map. Size, shape, and colour were found to have the biggest influence on the applied metrics. 
The analysis of eye-tracking data revealed that the display of cycling related features can affect the time needed for 
successfully completing a task. To deepen the gained understanding, further research should in more detail investigate how 
base maps influence bike maps efficiency. 
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1. Introduction 
In the course of mitigating traffic problems, reducing CO2 
emissions, climate change impacts, noise immissions, etc. 
cities worldwide increasingly promote cycling as means of 
transport and invest in respective infrastructure. Compared 
to other means of private transportation cycling has many 
advantages. It causes neither noise nor pollution and 
requires significantly fewer public resources and space. 
The energy required for cycling is provided by the 
traveller, resulting in additional health benefits for the 
traveller. Cycling is also much cheaper than a private car 
or public transportation. In sum, it is the most 
environmentally, socially, and economically sustainable 
means of transportation (Pucher and Buehler, 2008). 
Different aspects can help promote bicycling, such as 
direct routes, the presence of bicycle facilities, road safety, 
and others (Rybarczyk, 2014). Additionally, cities publish 
dedicated bike maps that emphasize features of particular 
importance to cyclists. The design of bike maps shows 
great variation in the number of shown map elements and 
symbology. While some maps display all streets, others 
depict only major routes. Furthermore, urban cyclists are 
not a homogeneous group and show large differences in 
terms of abilities, destinations, purposes, and needs. While 
some use their bicycles to commute to work, others prefer 
to ride in their leisure time (Rybarczyk, 2014). Different 
types of cyclists may need specific information and hence 
are interested in different aspects of a bike map, such as 
the availability of bicycle lanes, paved or unpaved streets, 
one-way streets, dangerous crossings, terrain, bicycle 
service stations, or pumping stations. This versatility of 
possible features makes bike maps more visually complex 

than other maps. With this paper, we aim at studying the 
visual complexity of bike maps, specifically from a 
perceptual angle. Our objective is to contribute to an 
improvement of the overall design and efficiency (i.e., the 
speed with which a task is completed successfully) of bike 
maps. Thus, we show the results of an eye-tracking 
experiment to answer the following research questions, 
where 1a) and 2a), as well as 1b) and 2b), are related: 
1a) How visually complex are different bicycle base maps? 
1b) How does visual complexity of base maps affect the 
efficiency of bike maps?  
2a) How does the display of different cycling related 
features affect the visual complexity of bike maps?  
2b) How does the display of different cycling related 
features affect the efficiency of bike maps?  
From these research questions, we formulate following 
hypotheses: 
1a) More detailed base maps are visually more complex. 
1b) Bike maps with visually complex base maps are less 
efficient. 
2a) More displayed cycling related features are visually 
more complex. 
2b) Bike maps with more displayed cycling related 
features are less efficient.  

2. Background 

2.1 Bike maps 
Bike maps differ from topographic maps or general city 
maps, by deliberaltly depicting features that or important 
to cyclists, such as bikeabilioty, dedicated bike lanes, 
terrain steepness, bike parking opprtunisties, etc. While 
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such bike maps exist, Wessel and Widener (2015) criticise 
that most bike maps issued by city governments assume a 
typical cyclist. However, there is no such thing as a typical 
cyclist. The purpose of cycling, skills, and needs differ 
substantially. Since cycling experience is a major factor for 
the suitability of routes for different cyclists, Dill and 
McNeil (2016) propose four categories of cyclists. The 
Strong and Fearless, The Enthused and Confident, The 
Interested but Concerned, and The No Way No How. 
Strong and Fearless take part of their identification from 
riding and would ride whatever the roadway conditions 
are. The Enthused and Confident do ride on roads with 
cars, but they would prefer their own, separated facilities 
and are thus keen on improved infrastructure. Interested 
but Concerned people would like to ride but hesitate to do 
so, as they are afraid. The No Way No How do not cycle 
for various reasons including steep terrain, inability, or a 
lack of interest. For the city of Portland, Oregon the 
inhabitants were categorised based on this topology. Less 
than 1% are in the Strong and Fearless group. 7% of the 
people are Enthused and Confident, 59% are Interested but 
Concerned. The last group, the Now Way No How are 
about 33% (Dill and McNeil, 2016).  
Wessel and Widener (2015) propose a design for a bike 
map for the city of Cincinnati from a cyclist’s perspective, 
the Cinncinati Bike Map. The roadways should be 
presented in such a way that cyclists can see the possibility 
of friction with cars. Included is the speed indicated by 
colours, the width of streets, bike lanes, and elevation. 
Also included is additional useful information such as 
track signals, water, and bicycle shops. This approach on a 
bike map is novel. However, many map readers did not 
examine the legend and just guessed the meaning of roads 
based on the colours. Since the map symbology is not 
intuitive, the interpretation was frequently inaccurate. For 
example, some readers thought that colours mean good or 
bad roads (Wessel and Widener, 2015).  

2.2 Map Complexity 
Map complexity has been studied since the 1970s to grasp 
the process of map-reading, find out what makes maps 
difficult to read, and ultimately improve their design and 
effectiveness (Castner and Eastman, 1984). MacEachren 
(1982) assumed, that map complexity and map 
effectiveness are negatively correlated, i.e. if a map is 
more complex, the reader needs more skills to read the map 
(MacEachren, 1982). This assumption has also been 
supported by more recent studies. Harrie and Stigmar 
(2007), for example, claimed that map complexity can 
affect readability. As there is agreement that map 
complexity influences the effectiveness of maps, there has 
not been a conclusive answer to how maps are perceived 
and understood. As a result, research on the topic of map 
complexity continues. Even the term “complexity” itself 
can be defined in a variety of ways, as academics from 
different fields use the term differently (Schnur, Bektaş 
and Çöltekin, 2018). Despite the different perspectives, a 
consensus on two major categories has emerged: visual (or 
graphic) and intellectual complexity (MacEachren, 1982). 
According to Ciołkosz-Styk and Styk (2011), the two 

complexity aspects correspond to two fundamental aspects 
of a map: syntactic and semantic. Visual complexity is 
concerned with the complexity of the map symbology, 
while intellectual complexity refers to the intrinsic 
complexity of the features or phenomena that are 
represented by the map. Visual complexity is determined 
by the degree of extensiveness, generalisation, and visual 
variable order (Ciołkosz-Styk and Styk, 2011). 
(Barvir and Vozenilek, 2020) define visual complexity of 
a map as the fullness of a map. The density of labels, map 
symbols and their properties (e.g., form, size, fill), and 
spatial distribution all influence the fullness (Barvir and 
Vit, 2021). 
Since measuring intellectual complexity is difficult, 
different studies have developed criteria to determine the 
graphic map load. Alongside the development of metrics, 
user experiments using eye-tracking became an 
experimental approach to estimating map complexity 
(Barvir and Vit, 2021). 

2.3 Approaches to Quantify Map Complexity 
Methods to assess the complexity of maps with 
quantitative measures can be divided into two broad 
categories: object counting based and image processing 
based on raster pixels.  
Counting the total number of objects in a map for 
quantifying map complexity is a basic approach. However, 
it depends on the definition of a single object, which is not 
so easy. However, determining what an object is, is not 
straightforward. I.e., it is unclear if a road as a whole or a 
certain segment of it count as an object. Harrie and Stigmar 
(2007) describe different measurements for evaluating 
map complexities, such as the number of objects, number 
of points in the objects, object line length, object length, 
the spatial distribution of objects, and spatial distribution 
of points. As an extension of the Object Counting 
approach distinct object-type count was introduced by 
Schnur, Bektaş and Çöltekin (2018). Complexity might be 
affected not only by the total number of individual items 
on a map but also by the number of distinct types or 
categories. The expectation is that an increasing number of 
distinct map symbols increases human working memory 
more than the number of times a symbol is used (Schnur, 
Bektaş and Çöltekin, 2018).  
The first image processing method applied to quantifying 
map complexity was edge detection. Oliva et al. (2004) 
used this technique to calculate the Edge Density, i.e. the 
percentage of pixels in the map that are edge pixels. The 
assumption is that the higher the number of edge pixels, 
the higher the map complexity. 
Rosenholtz, Li and Nakano (2007) propose Subband 
Entropy to measure spatial uniformity in an image as a 
proxy for complexity. This is based on the notion that 
when a picture becomes more crowded, the number of bits 
required for subband image coding will increase. It 
measures how hard it is to encode the information that is 
present in the image. As subbands of the image features 
like brightness, chrominance, colour, and edge orientation 
are taken into account (Speed et al., 2017). As a measure 
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for visual clutter Rosenholtz, Li and Nakano (2007) 
suggested Feature Congestion. Clutter is defined as 
”...the state in which excess items, or their representation 
or organisation, lead to a degradation of performance at 
some task” (Rosenholtz et al., 2005; Rosenholtz, Li and 
Nakano, 2007). When more and more items are added to a 
map, there is less space to add new items, leading to feature 
congestion. There are already too many colours, sizes, and 
shapes that make up a crowded area. Based on feature 
(co)variance computation and integration over scales an 
overall feature congestion value is output for an image.  
Fairbairn (2006) suggested other measures, such as 
contrast weighted edge density, double log fractal 
dimension, landscape shape index, Simpson’s and 
Shannon’s Index, and others. 
Following up on image-based complexity measures Barvir 
and Vit (2021) developed a Graphic Map Load 
Measurement Tool (GMLMT) to calculate a map-load 
value as a proxy for map complexity. As a first step, an 
edge detection filter (Sobel) is applied to the map extract 
and then the image is transformed to monochrome mode. 
Next, the image histogram is used for calculating the 
average pixel value of the monochromatic image. The 
value range is normalised into percentages (0 – 100%). 
Finally, the map-load level is computed as the average of 
the map’s current structures. For better illustration, also a 
grid is created that indicates which parts of the image have 
a higher load (bright tones) and which have a lower load 
(dark tones). 

3. Methods 

3.1 Participants 
As bike maps should be useful for everyone, we had no 
exclusion criteria for our experiment. Participants were 
recruited at the University and from the personal network 
of the first author. Initially, 44 people signed up to take 
part in the experiment. Unfortunately, for 9 participants the 
eye-tracker could not record data reliably. As a result, this 
study includes data from 35 people participants between 
21 and 34 years old (M=25; SD 2.3; F:11; M: 24). None of 
these participants indicated colour blindness. 67% of the 
participants are geography students, 8% are teachers, 25% 
have another academic background. All participants gave 
written consent to the experiment after being informed. 

3.2 Experimental Design 
Research questions 1a and 1b relate to base maps, whereas 
2a and 2b focus on cycling related features. For this study, 
a two-by-two factorial design was adopted (Figure 1). The 
four cells will be abbreviated with BM1CRF1, BM1CRF2, 
BM2CRF1, and BM2CRF2. BM relates to the base map, 
while CRF relates to cycling related features. The 
numerals 1 and 2 represent the degree of complexity. For 
example, BM1CRF2 represents a map with low 
complexity in terms of the base map (BM = 1) and high 
complexity in terms of cycling related features (CRF = 2). 

 
1 https://www.limesurvey.org 

 
Figure 1. 2x2 factorial design of the experiment with two 
complexity levels for base map and bike related features. 

The independent variables ‘visual map complexity of the 
base maps’ and the ‘complexity of cycling related features’ 
have two levels each (see Figure 1 for an example). The 
dependent variables are eye-tracking metrics (time to first 
fixation, fixation count, and task solving time). Age, 
gender, prior familiarity with bike maps, and maps in 
general are controlled in the experiment. To obtain this 
data a questionnaire was created using LimeSurvey1. 

3.3 Materials 
To reach a higher ecological validity with our experiment, 
we decided to use a real city with an existing bike map 
rather than use simple design mock-ups. However, to 
address the possibility of familiarity, we chose the city of 
Nashville, Tennessee that is likely unknown to our study 
group. The city has sufficient bicycle infrastructure to 
allow the creation of more complex maps and is also very 
likely to be unfamiliar to the participants of the 
experiment. 
To inform the stimuli design, we looked at bike maps from 
twelve of the top twenty cities listed by the Copenhagenize 
Index, which assesses cities worldwide in terms of their 
bicycle friendliness (Zayed, 2016). For stimuli creation, 
the Nashville bike map was imported to Affinity Designer 
and modified to produce our testing map set.  
A low-complexity base map and a high-complexity base 
map were chosen. The following features were chosen for 
the low-complexity base map (BM1): streets, highways, 
parks, water bodies, street labels, and park labels (Figure 
2).  
The base map of higher complexity (BM2) displays the 
same features as the low complexity base map, but 
additionally includes hospitals and buildings from 
OpenStreetMap, and a higher number of labels (Figure 3). 
Looking at cycling related features on different maps, it is 
striking that there are many distinct features that may be 
displayed on a map. The most common were undoubtedly 
cycle tracks, bicycle lanes, shared lanes, bicycle stations, 
pedestrian areas, and repair shops. 
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Figure 2. Low complexity base map. 

Some maps included bicycle paths that were either 
proposed or under development. The analysis shows that 
circumstances change from city to city, particularly when 
looking at bike maps from multiple continents. The 
majority of bicycle tracks, lanes, and roadways are 
coloured. Bicycle lanes are often depicted dashed on bike 
maps, as they are frequently found in reality. Bicycle 
stations are often represented by a bicycle beneath a roof, 
and repair shops by pliers. 

 
Figure 3. High complexity base map. 

A plethora of cycling related features could be depicted on 
a bike map. The most common were undoubtedly cycle 
tracks, bicycle lanes, shared lanes, bicycle stations, 
pedestrian areas, and repair shops. The decision on which 
features to display and what term to use is based on the 
Nashville bike map. For the lower complexity (CRF1) 
following cycling related features were considered: 
bicycle racks, physically protected bicycle lanes, bicycle 
lanes, bicycle routes, and non-cycling roads (Figure 4). 
The higher complexity level of cycling related features 
(CRF2) comprises additional features, i.e., pumping 
stations, railway crossings, bicycle signs, bicycle rental 
shops, main bicycle routes, off-street bicycle routes, and 
easy-riding zones (Figure 5). Moreover, the number of 
symbols overall is higher than in CRF1. Second, the 
bicycle paths have been further separated into two 
categories.  
As the four stimuli should be a well-balanced set of 
complexities, we calculated the image-based complexity 
measures and performed a distinct object count. This 
allowed us to modify the stimuli in such a way that the 
order of complexity is preserved and known. 

 
Figure 4. Low complexity cycling related features layer. 

 

 
Figure 5. High complexity cycling related features layer. 

We first calculated GMLMT, Features Congestion (FC), 
Subband Entropy (SE), and Edge Density (ED) for all four 
layers. These are metrics proposed to measure complexity. 
However, GMLMT, FC, and ED are based on the same 
principle of measuring how many edges are within a 
picture. Thus, having a high congruence when applied. SE 
measures the bits required to encode an image, taking 
different subbands (brightness, chrominance, colour, and 
edge orientation) into account.  
For every measure, BM1 gets lower values than BM2, and 
CRF1 gets lower values than CRF2. Furthermore, base 
map layers are more complex than cycling related feature 
layers (BM1 > CRF1, and BM2 > CRF2).  
The quantification for all four stimuli is shown in Table 1. 
For every measure, BM1CRF1 > BM1CRF2 & BM2CRF1 
> BM2CRF2. As a result, the overall goal of balancing was 
achieved. The goal was for BM1CRF2 and BM2CRF1 to 
be as similar as possible. This was not possible because 
base maps have a higher complexity than cycling related 
features. Another essential aspect was to make sure that the 
spacing between BM1CRF1 and BM1CRF2|BM2CRF1 is 
close to BM1CRF2|BM2CRF1 and BM2CRF2.  
Stimuli GMLMT FC SE ED  
BM1CRF1 16.5% 5.71 4.31 6.7% 
BM1CRF2 20.7% 6.66 4.44 8.8% 
BM2CRF1 20.1% 6.25 4.55 7.1% 
BM2CRF2 23.9% 7.06 4.61 9.2% 
Table 1: Quantification of stimuli 
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We also performed a distinct object-type count on the 
produced stimuli. In all complexities, the 12 distinct 
objects of BM1CRF1, are visible. BM1CRF2 has 19 
objects. BM2CRF1 contains 14 objects, while BM2CRF2 
has the highest object-count with 21. This set is uneven 
from the standpoint of object-count. BM1CRF1 is still the 
least complex and BM2CRF2 is the most complex map, 
but BM1CRF2 and BM2CRF1 show big differences. To 
achieve a balanced set of measures, an imbalanced object-count 
metric was unavoidable. The only way around this would be 
to create a fictitious map. 
Some of the stimuli had to be altered for the tasks (see 
section 3.4). The task-specific stimuli were also quantified 
to ensure that the different metrics did not change too 
significantly. Although for some tasks the values of the 
measures for the individual stimuli vary, they are still valid 
and follow the main order of complexity.  

3.4 Experiment Tasks  
All participants had to complete four tasks in the 
experiment. The experiment follows a within-subject 
design, meaning that all the participants see the same 
stimuli.  
Task 1 was to spot the you-are-here (YAH) symbol and 
then click on it when they have found it. Eight bike maps 
(two for each factorial design cell) with randomly placed 
YAH symbols were shown to the participants. 
In Task 2, participants had to look for and count bicycle 
racks randomly distributed on a bike map. In total, four 
maps are presented, two displaying six and two depicting 
seven bicycle racks. Depending on the distribution, the 
visual map complexity changes, which was tested before 
utilising the stimulus. On finishing the task, participants 
had to click on the screen and select the counted number 
from a scale. 
In Task 3, participants had to search for a specific park on 
the map. The name of this particular park appears at the 
top of each map. After finding the park, the participant can 
proceed by clicking on it. For each of the four cells of the 
factorial grid, four varied maps were created. To avoid a 
learning effect, the names of the parks to detect were 
randomised and the names of ten labelled parks always 
changed. For each cell, only one of the four crated maps 
was randomly picked and presented to the participant. 
For Task 4, four different maps with varying degrees of 
complexity were shown to participants, including a start 
and end point and a legend for the various bicycle 
infrastructure displayed on the map. Participants must find 
the quickest route between the two spots. They should 
follow the fastest route by hovering over it with the mouse 
once they have found it. Two routes with almost equal 
distance and complexity were chosen and start and end 
points were swapped and assigned to two of the four maps. 

3.5 Procedure 
The experiment took place in an eye-tracking lab at the 
University of Zurich. Stimuli were presented to 
participants on a 23-inch screen with a resolution of 1920 
x 1080 pixels. Participants’ gaze was recorded with the 

binocular Tobii TX300 eye tracker at a sampling rate of 
300Hz. We decided to run the experiment in the lab, for 
safety reasons and to control for varying environmental 
conditions. While a field study would be closer to real 
world scenarios and yield higher ecological validity, 
changing conditions between participants would also lead 
to a bias. 
A pilot test was run before the main experiment to ensure 
that tasks are clear and understandable and stimuli work. 
This allowed us to make minor changes to the experiment 
design and the stimuli. 
The main experiment started with an introduction to the 
experiment objective and the signing of the consent form. 
Next, the participant’s gaze was calibrated with the eye 
tracker. Then, a short training run for all four tasks was 
conducted to ensure participants understand the tasks. 
There was only one task per map to complete and the 
displayed maps were small extracts of a fictional map. The 
main data collection started, and participants looked at a 
total of 20 maps in 4 tasks.  
At the end of the experiment, participants remained seating 
and filled in the questionnaire in a browser tab. 

4. Results 

4.1 Eye-Tracking Data 
To analyse the collected eye-tracking data statistically, we 
defined areas of interest (AOI) around the symbols, 
legends, etc. in the different stimuli. Analysis of variance 
is utilized to test for variance in the gathered data. Before 
conducting ANOVA, tests for normal distribution 
(Shapiro-Wilk test) and homoscedasticity (Levene’s test) 
must be conducted. If ANOVA reveals significant 
differences Tukey HSD shows where differences within 
the groups exist. When the data is not (log-)normally 
distributed, a non-parametric test (Mann-Whitney U) is 
used. All tests are conducted with a significance level of 
0.05. 

4.1.1 Task 1: Locate the YAH Symbol 
The time to first fixation (TTFF) data aggregated for the 
sub-tasks shows that BM2CRF1 has the lowest average 
value, followed by BM1CRF2 and BM1CRF1, which have 
very similar values. BM2CRF2 has the highest values. 
A Mann-Whitney U test shows significant differences in 
TTFF between the stimuli, except for BM1CRF1 and 
BM1CRF2 which show very similar values. It is worth 
n o t i n g , however, that BM2CRF1 is significantly smaller 
than BM1CRF1, which was unexpected. 
4.1.2 Task 2: Count Bicycle Racks 
The average time to first fixation on the bicycle racks is 
the shortest for BM1CRF1, followed by BM2CRF1, 
BM2CRF2, and BM1CRF2. However, for the fixation on 
the fifth and sixth bicycle racks, it took the participants a 
little less time for BM2CRF1 than BM1CRF1. This order 
is also manifested for the average time needed to fixate the 
next bicycle rack. 
An ANOVA reveals that there are significant differences 
between some stimuli (p < 2e-16). The Tukey HSD shows 

Proceedings of the International Cartographic Association, 5, 3, 2023. 
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-5-3-2023 | © Author(s) 2023. CC BY 4.0 License.



6 of 8 
 

that BM1CRF1 and BM2CRF1 are not significantly 
different, just like BM1CRF2 and BM2CRF2. All the other 
combinations are significantly different from each other.  
The time needed for task completion shows a similar order 
for the stimuli as for TTFF. A Mann-Whitney U test 
confirms that BM1CRF1 and BM2CRF1 are significantly 
different from BM1CRF2 and BM2CRF2. Differences 
between BM1CRF1 and BM2CRF1, like BM1CRF2 and 
BM2CRF2, are not significant. 
A Mann-Whitney U test for the number of fixations, i.e. 
how often do the participants look on average on a bicycle 
rack, before moving on, shows the same results as for the 
task completion duration. 
For every stimulus, the majority counted the objects 
correctly. All participants (100%) gave the correct answer 
for BM1CRF1 (with seven bicycle racks). The second 
greatest accuracy has BM2CRF1 (with six bicycle racks) 
(94%), followed by BM1CRF2 (with six bicycle racks) 
(91%) and the lowest accuracy (74%) of counted bicycle 
racks has BM2CRF2 (with seven bicycle racks). 
4.1.3 Task 3: Locate a Park 
Although the average time to fixate a next park is longest 
for BM1CRF2 an ANOVA revealed no significant 
differences between the four stimuli. For the time needed 
to complete the task, a Mann-Whitney U test also shows 
no significant differences between the four stimuli. 

4.1.4 Task 4: Search for a Route 
For stimuli BM1CRF1 and BM2CRF2 A and B had the 
same position but were inverted. BM1CRF2 and 
BM2CRF1 were treated in the same way. In all stimuli, the 
legend was fixated often.  
TTFF on point A is highly similar within the stimuli. 
BM1CRF1 and BM2CRF1, the maps with a low number 
of symbols, have lower TTFF values than BM1CRF2 and 
BM2CRF2. The same appears to be true for symbol B.  
A Mann-Whitney U test is applied to both datasets. For the 
start symbol, no significance was found. For the second 
symbol, significant differences could be found. Table 2 
shows the calculated values for the Mann-Whitney U test. 
 BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2 
BM1CRF1 - - - - 
BM1CRF2 0.0087 - - - 
BM2CRF1 0.0018 2e-07 - - 
BM2CRF2 0.8549 0.0251 0.0006 - 

Table 2: Mann-Whitney U Test for TTFF for the Second Symbol 

It was expected that the participants would take the least 
amount of time to complete the task in BM1CRF1, but 
instead, BM2CRF1 took them the least amount of time, 
followed by BM1CRF2. For the task completion duration, 
a Mann-Whitney U test revealed that BM1CRF1 is 
significantly different from BM2CRF1 and BM2CRF2. 
BM2CRF2 significantly differs from the other three 
stimuli. 

5. Discussion 
We formulated two hypotheses with respect to the visual 
complexity of base maps and cycling related features: 

H1a) More detailed base maps are visually more complex. 
H2a) More displayed cycling related features are visually 
more complex. 
From the quantitative analysis of the experiment’s base 
maps, it can be concluded that the detail of base maps and 
visual complexity are positively correlated. The same is 
true for showing more cycling related features. For all 
measures GMLMT, FC, and ED, the computed complexity 
values were higher for the more detailed base map and the 
layer displaying more cycling related features. 
This finding is intriguing since only two items are added 
to the more detailed base map: hospitals and buildings. The 
measurements are highly sensitive when elements have a 
lot of edges. Buildings, for example, have a lot of edges 
and are distributed all over the map, which adds to the 
visual complexity. Adding six additional objects to CRF2 
compared CRF1, seems to have a smaller effect on the 
visual complexity than adding more buildings to the base 
map. Pedestrian areas and easy-riding zones are on the one 
hand widely distributed, resulting in a bigger impact on 
complexity than other features. On the other hand, they 
have a smaller impact than buildings, since they typically 
have fewer edges. 
Another important factor to consider is contrast. High 
contrasts (e.g., between dark buildings and white 
background) create stronger edges that then influence the 
complexity measure. Reducing contrast may influence 
complexity. For our base maps we applied some 
transparency to the buildings to reduce contrast. We could 
observe in some cases, that the depiction of zones can 
minimise complexity, when it is represented with a colour 
leading to less contrast. However, we suspect that the 
lower contrast in our stimuli caused some participants to 
perceive this zone worse. 
Overall, both hypotheses H1a) and H2a) can be accepted. 
A more detailed base map or adding more cycling related 
features leads to a visually more complex cycling map. 
When the cycling related characteristics are integrated 
with the base map, however, it’s vital to remember that 
zones might minimise visual complexity. 
Accepting hypotheses for 1a and 2a allows the usage of the 
prepared stimuli in the experiment. The eye-tracking 
experiment was done to learn more about the impact of 
visual complexity on bike map efficiency. The following 
hypotheses address the efficiency of bike maps: 
H1b) Bike maps with visually complex base maps are less 
efficient. 
H2b) Bike maps with more displayed cycling related 
features are less efficient. 
Task 1: Locate the YAH Symbol 
For task 1, the participants were expected to find the YAH 
sign in the stimuli BM1CRF1 first, then BM2CRF1, 
BM1CRF2, and BM2CRF2. According to the hypotheses, 
more complex bike maps are less efficient. Furthermore, 
CRF1 contains fewer symbols than BM1CRF2, thus the 
participant seeking the symbol may be less distracted. 
Overall participants took the least amount of time to locate 
the symbol BM2CRF1, followed by BM1CRF2, 
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BM1CRF1, and BM2CRF2. The position of the symbols 
could potentially be a reason why BM2CRF1 has lower 
values than BM1CRF1. For BM2CRF1, the symbols were 
again closer located to the centre. In both BM1CRF1 and 
BM2CRF2, the symbols were about the same distance 
from the centre. The symbols in BM2CRF2 are located in 
areas where map information is rather low. As a result, the 
high values for stimuli BM2CRF2 can also be explained 
by the position of the symbols. The location appears to 
have more of an impact on the outcome, than the map 
complexity. This is also something map designers should 
bear in mind when creating maps. Selecting an extract with 
the YAH symbol in the centre of the map can help users 
avoid searching for a long time. 
Task 2: Count Bicycle Racks 
For this task, the outcomes are more in line with the 
expectations. Maps with fewer cycling related feature 
complexity have lower values and are thus more efficient 
than those with more cycling related features. This holds 
true for both the average time to new fixation and the 
duration it takes to complete a task. It is also worth noting 
that BM2CRF2 was more efficient than BM1CRF2. The 
distribution of bicycle racks could be again the reason, 
although nothing unusual can be found. 
The response accuracy matches predictions, with 
BM1CRF1 having the highest accuracy, followed by 
BM2CRF1, BM1CRF2, and BM2CRF2. One probable 
explanation is that as the map becomes more complicated 
and more symbols are depicted on the map, the map reader 
becomes more confused and struggles to locate all the 
bicycle racks. The fact that BM2CRF2 has by far the 
lowest accuracy rate is intriguing. This aspect 
demonstrates that also the design of the base map might 
have an impact on efficiency, as the participants were only 
partially successful in completing the task. 
Task 3: Locate a Park 
This task was meant to address the various levels of base 
map complexities. However, despite the pilot testing and 
randomisation efforts, participants recognised where the 
parks are located on the map after the first subtask, and 
there was a learning effect as only the names of the parks, 
not their locations, changed. Rather, the participants’ 
ability to read park names quickly was measured in the 
end. This effect is mirrored in the task’s outcomes. There 
were no significant changes in the average time to new 
fixation and the time required to complete the activity. 
Task 4: Search for a Route 
The assumption for this task is that symbols of less 
complex maps are detected faster and the time needed for 
task completion is shorter. 
TTFF of symbols was already investigated in task 1. Many 
significant differences could be detected in this task. In the 
instance of task 4, this was not the case. The fixation of the 
first symbol showed no significant differences. However, 
a pattern can be seen. The values of BM1CRF1 are lower 
than those of BM2CRF2, while the values of BM2CRF1 
are lower than those of BM1CRF2. Task 1 revealed that 
finding a symbol takes longer when the amount of cycling 

related features displayed is greater. For the second 
symbol, significant differences could be found. Only 
BM1CRF1 and BM2CRF2 showed no significant 
differences. It is hard to pinpoint a plausible cause for this 
case; perhaps further testing should be run on this task to 
determine if this is an outlier or not. All in all, the same 
pattern could be observed for the detection of the first 
symbol. There is a trend that stimuli containing CRF1 
symbols are identified faster than stimuli containing the 
second level of cycling related features. 
The previous trend can be noticed again for the duration of 
task completion. When providing stimuli with a low level 
of visual complexity, it took less time to decide on a route. 
However, the location of the stimuli may have influenced 
the time needed. For this task, the symbols have been 
inverted. For stimuli BM1CRF1 and BM1CRF2, the route 
is from top to bottom and from left to right, respectively. 
It is plausible that if the route is from the bottom to the 
upper part of the map (BM2CRF2) or from left to right 
(BM2CRF1) the participants require more time, as this is 
less intuitive. Hence, the intuition of the participants may 
have increased the trend. More tests are needed to evaluate 
the impact of the route’s direction. 
Overall, task 4 has shown a trend that presenting more 
cycling related features is less efficient. However, the 
design of the task also influences the outcomes. More 
testing with different starting and ending positions on the 
map is required. 
Both hypotheses H1b) and H2b) cannot be accepted. An 
influence of map complexity on efficiency could only be 
found partially, but without clear significance. Although 
the complexity of cycling related features had a greater 
influence on efficiency, we got mixed results. Reasons for 
these findings may be inappropriate tasks and possible 
learning effects (task 3).  
Although we got insightful results, our work has some 
limitations. The experiment is primarily set up as a within-
subject design, which may have introduced a learning 
effect. Participants may be able to learn from presented 
maps, and hence possibly perform better after seeing the 
stimuli numerous times. Overall, we could not observe a 
major learning effect. Only in task 3, where the names of 
the parks change, but the park areas remain the same, we 
could observe a possible learning effect from the outcome. 
We randomised the order of stimuli within a task. It would 
have been even better to randomise the stimuli even across 
tasks. However, this would lead to major confusion for the 
participants, having to solve alternating tasks. 
Another issue arises from the position of the symbols in 
tasks 1, 2, and 4. Symbols placed in the centre of the map 
are likely to be recognised faster than one on the map’s 
edge. This is especially true because a calibration cross is 
displayed between tasks, causing participants to fixate on 
the centre of the screen.  
Overall, our sample size is adequate, but the sample is 
rather unbalanced with respect to gender, age, background, 
and bike use. A minority of the participants are female (11 
female and 24 male) and the age range is skewed towards 
young people. With most participants having a geography 
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background, their background is different from the broader 
public. In addition, the familiarity and frequency with 
which participants ride bicycles appear to be higher 
compared to the data of the city of Portland (Dill and 
McNeil, 2016).  
We used static bike maps in our experiment for better 
control. Likewise, we conducted the experiment in a lab. 
Future studies in the field with interactive bike maps on 
smartphone screens could bring more ecological validity 
and would be beneficial. 

6. Conclusions  
To foster cycling in urban environments, an increasing 
number of bike maps are being created. Due to lacking 
design guidelines for bike map approaches are very 
diverse. To find out how the design of a bike map 
influences its complexity, four different bike maps for the 
city of Cincinnati were created and analysed. In a factorial 
design, two layers of base maps and two levels of cycling 
related features were combined. GMLMT, Feature 
Congestion, Subband Entropy, Edge Density, and distinct 
object counts were used to measure the bike maps’ 
complexity. The measurements showed that more detail in 
base maps and the depiction of more cycling related 
features have a positive correlation with map complexity. 
The size, shape, and colour of the elements are considered 
to have the most impact on complexity measurements. 
When the element is large and has various boundaries, it 
adds more edges to the map, increasing its visual 
complexity. The colour contrast is crucial, as it can 
contribute to the creation of strong or weak edges. In this 
particular case, cycling related features had a smaller 
impact on visual complexity, as the symbols were small in 
size and number. 
The effects of visual complexity on efficiency were 
explored in an eye-tracking experiment with 35 
participants. Four tasks that were similar to those faced by 
cyclists on a daily basis had to be completed.  
No effect of map complexity on efficiency could be found 
for the base maps. The task constructed to investigate the 
base map did not work as expected, as there was a big 
learning effect. In task 2, counting bicycle racks, an 
influence of the base maps on the estimation accuracy 
could be found. All in all, a definitive answer to this 
research question cannot be given. 
For the complexity of cycling related features, the 
influence on efficiency was discovered. Significant 
variations between the two levels of cycling related 
features could be noticed in two tasks. When the 
participants searched for the YAH symbol on the map and 
when they had to count depicted bicycle racks. However, 
those two tasks were not fully randomised, thus, the 
location of the symbols is likely to also have an influence 
on the participants’ performance. For the other tasks, none 
of the stimuli showed a significantly better efficiency. 
Rather, recurring trends could be observed that complexity 
has an impact on the map’s efficiency. 
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