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Abstract: 

On a daily basis, hundreds of thousands of people in the City of Cape Town rely on road-based public transport as a 
means of commuting. A major factor that influences the passengers’ experience is the travel time to reach a desired 
destination. Due to various physical and operational factors, some sections of the road network experience high 
congestion and travel time delays during the morning and afternoon peak periods. Quantifying these delays, and the 
number of road-based public transport passengers exposed to the delay along a specific road section during a peak period 
allows informed decision-making and prioritisation. GIS and spatial data analysis are powerful tools to determine where 
and when such delays occur. Various spatial data sets exist that were jointly analysed to quantify the delay and the 
passenger volumes exposed to the delay on the city’s public transport network. 
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1  Introduction 
The City of Cape Town experiences very high levels of 
traffic congestion in South Africa, and according to 
TomTom’s congestion index, the city is ranked as having 
the second highest levels of congestion in the country after 
East London and currently ranks at 179 in the world 
(TomTom, 2021). As the population of the city grows, this 
situation gets amplified each year as the number of road 
users also increases. Long queues frequently form on 
higher-order roads due to downstream bottlenecks (City of 
Cape Town, 2019). These bottlenecks occur where road-
based demand exceeds the capacity of the infrastructure, 
leading to all lanes being utilised at full capacity. Such a 
situation causes the operational speed to drastically reduce, 
leading to an increase in travel times (City of Cape Town, 
2019). 

Given the significant number of public transport users in 
the city (City of Cape Town, 2019), it is crucial to 
understand how and to what extent longer travel times 
affect the duration of public transport trips. It is important 
to note that the purpose of the study was not to develop a 
new method for measuring congestion but rather to utilise 
an existing method of assessing congestion in the city and 
correlate it with the number of passengers affected by these 
delays. The novelty of this approach, therefore, lies in 
determining the number of road-based public transport 
users spatially during morning and afternoon peak hours, 
and then analysing passenger volumes along with travel 
delays to rank public transport bottlenecks. While 
standardised data formats such as General Transit Feed 

Specification (GTFS) exist and are utilised by some public 
transport operators in South Africa, these formats do not 
provide real-time information on the actual number of 
passengers per vehicle (Google Transit, 2023). Hence, 
alternative sources of passenger data needed to be 
considered. A Geographic Information System (GIS) is an 
ideal tool for addressing these inquiries due to the 
availability of essential spatial datasets, as well as the 
ability to segment the road network and peak hours 
spatially and temporally. 

2  Background 

2.1 Public Transport In The City of Cape Town 
Cape Town, similar to many other urban centres in South 
Africa, is experiencing rapid population growth, with an 
increasing demand for travel (City of Cape Town, 2019). 
Most residents rely on public transport to gain access to 
economic, social, educational, medical, recreational, and 
other activities. In 2017, more than 70% of people in the 
lowest income group were reliant on public transport and 
more than 50% in the low-medium income group (City of 
Cape Town, 2019). Public transport is an absolute 
necessity for a significant part of the population.  

However, the transport system is challenged by the fact 
that the majority of public transport trips are undertaken by 
Road Based Public Transport (approximately 70% for 
work trips) i.e., using minibus taxis (MBT, 46%) and buses 
(23%) (City of Cape Town, 2019). Rail is estimated at 28% 
but the overall quality, reliability, and availability of rail 

Proceedings of the International Cartographic Association, 5, 5, 2023. 
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-5-5-2023 | © Author(s) 2023. CC BY 4.0 License.



 

services are deteriorating, and commuters rely more and 
more on MBTs and buses (City of Cape Town, 2019). 

These challenges reduce access and mobility of residents 
and impact the economic and social advancement of its 
residents A key measurement of poor performance of the 
transport network is traffic congestion, especially along 
major public transport routes during the morning and 
afternoon peak hours. Identifying these key routes and 
quantifying the negative impacts of congestion on public 
transport users is important to assist in prioritising and 
mitigating these issues. 

2.2 The Use Of Probe Data For Measuring Travel 
Delays And Congestion 
Probe data refers to the positional and temporal data that is 
collected from a global positioning system (GPS) enabled 
onboard device that tracks a vehicle’s location over time, 
typically for anti-theft purposes. Multiple studies have 
been conducted to establish the reliability of probe data for 
accurately capturing congestion trends (Lattimer & 
Glotzbach, 2012, Jia, et al., 2013, Coifman & Seoungbum, 
2013, Kim, et al., 2011). However, the most common 
forms of congestion detection methods are radar detection 
and loop detection. The downside to these methods is that 
they are not as geographically scalable and readily 
available as probe-based speed measurements (Adu-
Gyamfi, et al., 2015). Lattimer & Glotzbach (2012) 
illustrated that on average there is an 8 – 9 km/h difference 
between probe speed data and ground truth (measured by 
radar/loops). In a study conducted by Jia, et. al. (2013) on 
a rural low-volume road, it was found that the mean 
absolute error between probe speed data and ground truth 
was roughly 6%.  

Latency also plays a role in probe speed accuracy, as has 
been found by Coifman & Seoungbum, (2013) and Kim, 
et al., (2011). They discovered that time-lags could 
sometimes be as high as 10 minutes, shifting the phase of 
the speed curve and reducing the temporal accuracy of 
reported probe speeds.  However, correcting for such 
latency could increase the accuracy of the probe speeds to 
an absolute error of approximately 2.5 km/h compared to 
ground truth.  

It has also been shown by Adu-Gyamfi, et al., (2015)  that 
there exists a positive correlation between the accuracy of 
congestion trends from probe data and the length of time 
over which data is collected. The longer the data collection 
period, the higher the accuracy of the congestion trend. 
The accuracy also differs for different road classes. The 
accuracy is roughly 74% and 63% on freeways and non-
freeways for short-term measurements (events with a 
duration of 15 to 30 minutes), and this increases to 95% 
and 68% on freeways and non-freeways for medium-term 
measurements (events with a duration of one to three 
hours)  

Long-term congestion patterns (recurring on a weekly and 
monthly scale) are the trends that this study focussed on 

and was found to be accurate for detecting general trends 
over time. Although a median error of 6km/h was 
observed, phase relationships were perfectly synchronized 
for both probe data and ground truth measurements with a 
correlation coefficient of 0.93 (Adu-Gyamfi, et al., 2015). 

3  Purpose and Objectives 
The purpose of this study was to identify the bottlenecks 
on the road network that are most heavily affected by 
congestion-induced delays and have the highest number of 
impacted public transport passengers. 

The main objectives were to utilise available spatial 
information to: 

1. Quantify and verify travel delays on the road 
network using real-time speed information 
obtained from probe data. 

2. Determine and validate the actual number of 
public transport passengers on the road network 
using onboard survey data and other traffic count 
information. 

3. Calculate the total passenger delay experienced at 
each bottleneck and rank them in order of priority, 
from highest to lowest. 

4  Data Source and Data Collection 
This section provides an overview of the data sources that 
were used in the execution of this study. Table 1 lists the 
data sources. Note that the analysis was based on pre-
COVID-19 conditions, therefore only data sources up to 
February 2020 were included in the analysis. 

Section Data Source Description Time 
Period 

4.1 Screenline 
counts and 
cordon 
counts 

Classified daily 
traffic counts and 
respective passenger 
occupancies 
across the City 

2016 - 
2017 

4.2 Intersection 
Counts 

Intersection traffic 
counts across the 
City 

2015 - 
2020 

4.3 Bus Onboard 
Surveys 

Surveyed all bus 
routes across the day 
over a 6-month 
period. Information 
on the number of 
trips per route, as 
well as boarding and 
alighting passenger 
information per 
route. 

2016 - 
2017 

4.4 MBT 
Onboard 
Surveys 

Onboard surveys of 
all routes, but only a 
sample of vehicles 
along each route. No 
info on how many 
trips per route. 
Boarding and 
alighting information 

2018 
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on each passenger 
along each route. 

4.5 In-Vehicle 
Probe Data 

Annonamised private 
vehicle tracking 
information provided 
by Tracker 

February 
2020 

Table 1: List of Data Sources 

4.1 Screenline And Cordon Counts 
Multi-modal cordon count survey data from 2017/2018 
were extracted from the City’s available database to 
understand the extent of public transport vehicles and 
passengers entering and leaving specific areas. The 
available information per count location included vehicle 
volumes per mode, occupants in both public and private 
transport vehicles (by service provider), and pedestrian 
volumes crossing the cordon or screenline. The vehicles 
were classified and recorded by mode, travel direction, and 
occupancy in 15-minute intervals (from 05:30 to 19:00).  

Screenline surveys were also undertaken on pre-defined 
locations on certain road corridors to determine traffic 
flows across screenlines in the City. The survey 
information and method of recording were the same as for 
the cordon counts. Passenger volumes and the distribution 
per 15-minute interval for the morning and afternoon peak 
periods were extracted from these screenline and cordon 
counts. Distributions were graphed and analysed at a 
suburb level, combining both MBT and bus passenger 
volumes. 

4.2 Intersection Traffic Counts 
Innovative Transport Solutions has access to a database of 
historical traffic counts at many intersections across the 
city. Information from these intersection counts was used 
to confirm public transport and general traffic volumes 
along the specific public transport routes. The database of 
intersection counts included traffic volumes for each 
approach, and also turning movements for at least the two 
peak periods of the day, but sometimes for longer periods 
up to eight hours. Respective count information was 
extracted for the last five years (up to February 2020). The 
shorter-duration traffic counts were extrapolated to the full 
study peak periods using extrapolation factors determined 
from longer-term counts at nearby intersections.  

4.3 Bus Onboard Surveys 
A comprehensive survey of all bus routes was undertaken 
in 2016/2017. The survey was completed over a period of 
6 months. Every trip along all bus routes was surveyed 
with details on the passenger load and off-loading at every 
bus stop. Surveyors recorded information for all routes on 
a GPS-enabled device and all trips were monitored at least 
once, with the reverse directions constituting separate 
trips. 

For the purposes of this study, average passenger volumes 
per peak period per route were extracted from these 
surveys to quantify the number of bus passengers per road 

section (the sum of all passengers of all routes travelling 
along the same road section). This was done per the 
direction of travel to ensure both peak- and off-peak 
passenger movements are captured and accurately 
mapped. 

4.4 Minibus Taxi Onboard Surveys 
A city-wide on-board minibus taxi (MBT) survey was 
undertaken in 2017/2018 to understand network coverage, 
route profiles and passenger information of Cape Town’s 
MBT services. For each MBT route, data was collected for 
a minimum of three MBT trips in the morning peak (05:30 
– 09:30) as well as in the afternoon peak (15:30 – 18:00) 
and a minimum of two MBT trips in the off-peak period 
(11:00 – 15:00). These routes are typically fixed between 
an origin and destination, with some route variations 
occurring on lower order roads.  

Since the dataset included only three surveyed trips per 
MBT route per peak period it is not possible to determine 
the total ridership (demand) on MBTs as was possible to 
do with the bus data. Therefore, the total MBT passengers 
per route had to be estimated. This was done using the 
number of bus vehicles along the route as a proxy for the 
number of MBT vehicles along the same road section, 
provided that MBTs were surveyed along the specific road 
section. The details of this methodology are described in 
Section 5.  

4.5 In-Vehicle Probe Data 
One of the main objectives of this study was to identify 
locations where public transport vehicles are exposed to 
congestion and the extent of this congestion. For this 
reason, in-vehicle probe data was used to identify and 
quantify congested road sections along the major public 
transport routes. The information was provided by Tracker 
South Africa. Tracker is a vehicle tracking company which 
offers personal vehicle tracking and comprehensive fleet 
management to customers throughout Southern Africa. 
The sample size for February 2020 across the study area 
was 54 582 unique vehicles and 244 336 231 unique 
positional coordinates, each recorded with a speed, 
date/time, and direction. Note that this was a pre-COVID-
19 period and was specifically selected as such. The 
onboard technology allows reporting of the location of 
each vehicle to an accuracy of at least five metres, but 
generally more accurately. The temporal resolution of the 
data was generally less than one minute per consecutive 
data point per vehicle. The data was stored in a relational 
database management system (Google Bigquery) and 
could be spatially queried using structured query language 
(SQL). 

5  Methodology and Analysis 
The methodology for calculating passenger delay using the 
spatial data sources referred to in Section 4 can be outlined 
as follows: 
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1. Define a road network and covert it to a spatial 
database 

2. Calculate average speeds and travel delays on the 
road network using probe data 

3. Calculate the number of public transport 
passengers on the road network 

4. Calculate the total passenger delay per road 
section 

5. Rank bottlenecks from highest to lowest 
passenger delay 

5.1 Definition Of The Road Network 
Congestion may occur on small spatial scales, and it was 
therefore decided to use 100 metres as the maximum 
length for road sections. OpenStreetMap centrelines were 
used as the base network and were split up into sections 
with lengths of a maximum of 100 metres.  

The directionality of the road links was necessary when 
calculating the average speeds and average number of 
passengers per direction. Each link was therefore assigned 
an average bearing attribute (degrees clockwise from 
north). In the cases where there was only one centreline 
representing both directions in the base network, these 
links were duplicated and their directionality reversed, to 
represent traffic moving in the opposite direction. Only 
Class 1, 2, 3 and 4 road sections were included since these 
routes typically accommodate public transport. These 
links were then uploaded as a spatial database in Google 
Bigquery. 

5.2 Average Speeds And Travel Delay On Road Links 
In order to calculate the average speed on each 100-metre 
link, a spatial SQL query was used that evaluated probe 
data points within 20 metres from each link. An average 
speed was calculated for each 15-minute interval in the 
morning (5:00 – 10:00) and afternoon (15:00 – 19:00) peak 
hours. Only data points for typical weekdays (Tuesdays, 
Wednesdays and Thursdays) were considered, and the 
bearing (travel direction) of the probe data points had to 
match the bearing of the underlying route section to 
maintain directional integrity. The coverage of probe 
sample data and representativity thereof were investigated 
to ensure the correct application of the data.  

The definition for congested speeds corresponds to a level 
of service E, as per the Highway Capacity Manual (Anon., 
2016). Level of service is a measure of congestion and is 
ranked from A to F, where A is free flow conditions and F 
is the most congested. Level of service E indicates that the 
amount of traffic is high, and the average speed is dropped 
to 20 - 30 per cent of free flow conditions, indicating the 
driver’s comfort, patience and convenience as poor. 

Based on this definition of congestion, a road link was 
considered congested if the average speed on the link fell 
below the following thresholds: 

• Principal Arterials/Freeways (Class 1): 
 < 30 km/h 

• Major Arterials (Class 2):  
 < 25 km/h 

• Minor Arterials (Class 3):  
 < 20 km/h 

• Collector streets (Class 4):  
 < 20 km/h 

In order to calculate the delay, the free-flow speed of each 
link had to be known. This was calculated by taking the 
average of all 15-minute intervals where the speed limit is 
above the congested speed threshold. Once the free-flow 
speed was calculated per 100-metre link, the delay per 15-
minute interval was calculated by taking the difference in 
free-flow speed and congested speed (formula 1). The 
section length was then divided by this speed differential 
to get the delay in minutes for each road section per 15-
minute interval (formula 2). 

1) ∆𝑉7:15−7:30 = 𝑉𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤 −
𝑉𝑎𝑣𝑔.		7:15−7:30	(𝑤ℎ𝑒𝑛	𝑏𝑒𝑙𝑜𝑤	𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  

2) 𝐷𝑒𝑙𝑎𝑦7:15−7:30 =
𝑆𝑒𝑐𝑡𝑖𝑜𝑛	𝐿𝑒𝑛𝑔𝑡ℎ

∆𝑉7:15−7:30
 

5.3 Number Of Public Transport Passengers On The 
Road Network 
The calculation of the number of public transport 
passengers was broken down into three steps: 

• Calculation of the number of bus passengers 
• Calculation of the number of MBT passengers 
• Scaling the total number of public transport 

passengers to 15-minute intervals 

5.3.1 Number Of Bus Passengers For The Entire Peak 
Period 
In order to understand the passenger demand on each link, 
it was necessary to pre-process the bus onboard survey 
data. For each bus route surveyed, a spatial tracks file was 
available in shapefile format. From the survey, the average 
number of passengers on each route was calculated across 
the entire peak period (the data is not accurate to the 
nearest 15-minute interval). This was then joined to the 
route shapefile. Due to the route shapefile having been 
created from a GPS tracks file, the directionality of travel 
was available for each route. In order to get a direction 
match with the underlying base network, each bus route 
was broken up into sections with a maximum length of 100 
metres and was assigned an average bearing attribute. 

Since duplication of a route occurs by splitting it up into 
100-metre sections, a single unique bus route section was 
joined to the underlying base network section only once. 
This removed the potential double-counting of passengers 
per duplicated route. The bus link was spatially intersected 
only if the bearing of the 100-metre bus route was similar 
to the bearing of the 100-metre base network section. Once 
all bus route sections were spatially intersected with the 
underlying base network sections, the average passengers 
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per route were summed to get the total number of bus 
passengers from all routes per 100-metre base network 
section for the entire peak period. The breakdown of bus 
passenger volumes per 15-minute interval was still 
unknown at this stage. 

5.3.2 Number Of MBT Passengers For The Entire Peak 
Period 
Since the total population of MBT passengers was 
unknown, bus passengers were used as a proxy for MBT 
passengers. Buses and MBTs typically share the same 
routes due to the fact that they mostly serve the same major 
origin-destination pairs, and this was verified using the 
onboard survey data. To use bus passengers as a proxy, 
intersection traffic counts (see Section 4.2) across the City 
were analysed. At each count location, the number of buses 
and MBTs were known for a given peak period. This could 
be used to calculate a ratio of bus-to-MBT passengers, 
using 41 as the average bus occupancy and 14 as the 
average MBT occupancy in the peak period, as derived 
from the onboard survey data.  

Due to discrete count locations across the city, zonal 
boundaries were defined that covered the road network 
extent and an average bus-to-MBT passenger ratio was 
calculated per zone. This ratio was then carried over to all 
100-metre links contained in the zone and applied to the 
bus passenger count in order to derive MBT passengers on 
the same link. The result was the total number of MBT 
passengers from all routes per 100-metre base network 
section for the entire peak period. The breakdown of MBT 
passenger volumes per 15-minute interval was still 
unknown at this stage. 

5.3.3 Total Public Transport Passengers Per 15-minute 
Interval 
Since the number of bus and MBT passengers had been 
calculated per link for the entire peak period, it was 
necessary to scale the total count to a corresponding 
demand profile per 15-minute interval. These profiles were 
obtained from the cordon and screenline counts that were 
available city-wide. A distance matrix was calculated from 
each link’s centroid to the five nearest cordon/screenline 
locations. The five nearest demand profiles were then 
averaged and assigned to the link as a percentage 
distribution of passengers per 15 minutes, for bus and 
MBT passengers respectively.  

These profiles made it possible to respectively redistribute 
the total bus and MBT passengers per peak period to an 
estimated passenger count per 15-minute interval on each 
100-metre link. This ensured that the temporal granularity 
for both the delay information, as well as the passenger 
information was the same and therefore comparable. 

5.4 Total Passenger Delay On The Network 
With the delay and passenger count known on each 100-
metre link for each 15-minute interval of the peak periods, 
it was possible to calculate the passenger delay for the 
whole peak period by multiplying the delay with the 

passenger count for each 15-minute interval, and then 
adding all the passenger delay for all 15-minute intervals 
in the given peak period. The calculation can be seen in 
formulas 3 and 4. 

3)	𝐷𝑒𝑙𝑎𝑦!"!#$	&' =* 𝐷𝑒𝑙𝑎𝑦 × 𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟	𝐶𝑜𝑢𝑛𝑡
()

*+,
 

4)	𝐷𝑒𝑙𝑎𝑦!"!#$	-' =* 𝐷𝑒𝑙𝑎𝑦 × 𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟	𝐶𝑜𝑢𝑛𝑡
,.

*+,
 

where n represents the product of the delay and passenger 
count for each 15-minute interval (5:00, 5:15, …, 9:45 for 
the morning, and 15:00, 15:15, …, 18:45 for the 
afternoon). The total passenger minutes lost were then 
calculated for each 100-metre base network section per 
direction and peak period.  

The next step involved visually examining the outcome on 
a map to identify and group sections of the network that 
were impacted by that same bottleneck. These bottlenecks 
typically occur at busy intersections or freeway segments 
where traffic merges. To determine the total passenger 
minutes lost caused by each bottleneck, the passenger 
minutes lost for all 100-meter links associated with the 
same bottleneck were added together. Finally, the 
bottlenecks were ranked based on the extent of passenger 
delay, from the highest to the lowest.   

6  Results 
All the results obtained in the study were mapped using 
ArcGIS Online. This platform allowed end users to 
interactively engage with the data and zoom/pan to 
locations of interest for closer inspection. Although both 
peak periods were analysed, only the results for the AM 
peak period are shown in this paper. 

In Figure 1, the minutes lost per passenger per direction 
per 100-metre link for the morning period are shown. This 
figure illustrates the magnitude of delay due to congestion. 
Workshops were held with city officials that had a good 
understanding of traffic flow across the City, and they 
confirmed that the areas highlighted in the study correlated 
well with known congested links during peak periods. 

In Figure 2, the total number of public transport passengers 
during the morning peak period is shown. These passenger 
volumes were calculated following the methodology 
outlined in Section 5.3. To ensure accuracy, the derived 
passenger volumes were compared with ground truth data, 
including cordon, screenline, and intersection count data. 
This comparison was used to confirm that the passenger 
volumes obtained through spatial analysis accurately 
reflected realistic passenger volumes across the entire 
public transport network. 

Using the data shown in Figure 1 and Figure 2, the total 
passenger minutes lost could be calculated for each link as 
described in Section 5.4. The result is shown in Figure 3. 
Certain 100-metre links were then grouped together if they 
were caused by the same bottleneck, and the passenger 
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minutes lost for all these individual links were summed to 
get the total passenger minutes lost for the entire 
bottleneck.  This result can be seen in Figure 4, where the 
top 40 bottlenecks are represented by the sections of the 
road that they impact. 

For the purposes of this paper, these bottlenecks were 
mapped as lines with graduated thickness without 
indicating the actual priority as determined in the study.  

 
Figure 1: Total minutes lost per passenger per 100-metre link per direction (5-hour Morning Peak Period) 

Powered by Esri 

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS,  
© OpenStreetMap contributors, and the GIS User 
Community 
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Figure 2: Total public transport passengers per 100-metre link per direction (5-hour Morning Peak Period) 

 
Figure 3: Total passenger minutes lost per 100-metre link per direction (5-hour Morning Peak Period) 

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS,  
© OpenStreetMap contributors, and the GIS User 
Community Powered by Esri 

Powered by Esri 

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS,  
© OpenStreetMap contributors, and the GIS User 
Community 
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Figure 4: Top 40 road-based public transport bottlenecks ranked by total passenger minutes lost 

 

7  Summary and Conclusion 
The growth and development as well as the influx of 
people to Cape Town have exceeded the rate at which 
transport infrastructure and systems have been provided in 
order to cope with the resulting travel demand. This, 
coupled with the decline of the passenger rail service over 
the last few years has resulted in a sharp increase in the 
road-based travel demand, further impacting negatively on 
the congestion levels to which both public and private 
transport are exposed. The congestion in Cape Town is 
well known and the impact it has on commuters, especially 
public transport users, is noteworthy.  

Spatial analytical methods were successfully used to 
quantify traffic congestion and delay and calculate and 
estimate the total number of public transport passengers 
based on available survey data and count information. 
Although standards such as GTFS are used by some formal 
public transport operators, no standardised method of 
recording the total number of road-based public transport 
passengers in real-time currently exists, especially for 
MBT passengers. Therefore it was necessary to conduct 
bus and MBT onboard surveys and spatially analyse the 
passenger volumes. 

The mere size of the probe database (244 336 231 records) 
necessitated the use of a relational database environment 
since such large data volumes cannot be effectively 

processed or analysed in local GIS desktop software from 
files such as shapefiles or CSV files. Thus, in order to draw 
congestion trends from available probe data, all the 
relevant data sets were converted to spatial databases, 
which could then be analysed and compared using spatial 
SQL queries in Google BigQuery. 

The study identified and prioritised 40 locations which 
were clearly causing delays to most road-based public 
transport users. In many instances, the delays were also 
experienced by general traffic and any upgrades aimed at 
improving public transport movements would also 
improve the operations of general traffic. 

Firstly, based on the unique analytical approach followed 
in this study it was possible to identify and evaluate 
priority locations on an equal footing and on a city-wide 
scale. Secondly, the impact of these locations could be 
quantified systematically. This allowed a fair comparison 
among the locations and an assessment of actual impacts. 
Thirdly, it allowed prioritisation of these locations based 
on the total adverse impacts of the locations. The 
methodology can be easily reapplied to identify and 
prioritise more locations for other cities in the future, given 
that the necessary onboard surveys are conducted to 
quantify passenger volumes on the road network. 

 

 

Powered by Esri 

Sources: Esri, HERE, Garmin, FAO, NOAA, USGS,  
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8  List of Acronyms 
 

COVID-19  Corona Virus Disease 2019 

CSV  Comma Separated Value 

GIS  Geographic Information System 

GPS  Global Positioning System 

GTFS  General Transit Feed Specification 

MBT  Minibus Taxi 

SQL  Structured Query Language 
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