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Abstract: The increasing volume and complexity of multimodal spatio-temporal data requires advanced approach for
data exploration, integration and interpretation. This paper presents a flexible and extensible dashboard framework
designed to support data-driven decision-making through interactive visualisation, exploration and analysis. The
dashboard allows users to interpret structured data such as GNSS, IMU or temperature measurements as well as
unstructured data types such as image files and contextual metadata. The dashboard follows the principle of combining
data with reference data and display the process from raw to processed data. The concept is developed both for analysts
and developers who need to identify suitable methods for analysing data and for subsequent debugging during the
project. It supports analytical tasks such as pattern recognition, the integration of data sets and the validation of analysis
results. By using InfluxDB for time series data management and Grafana for dynamic visualisation, the architecture
ensures high scalability and responsiveness even with complex data sets. A use case from rail infrastructure monitoring
shows how the dashboard facilitates data-driven insights and improves interpretability by linking multiple data
perspectives. The integration of raw data, processed results and planned information enables users to align analysis
results with operational objectives. This paper presents a reusable dashboard approach that improves decision-making

and visual understanding of multimodal spatio-temporal data in applied cartographic and monitoring contexts.
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1. Introduction

Interactive dashboards enable the visual presentation and
exploration of complex datasets through coordinated
maps, charts, and tabular views. Dashboards help to
understand, evaluate and predict the development of data
(Selby, 2009). Dashboards are used in many areas such as
healthcare (Alhamadi et al., 2022; Bach et al., 2022;
Davidson et al., 2022), education (Alhamadi et al., 2022;
Bach et al., 2022) and urban development (Alhamadi et
al., 2022; Bach et al., 2022).

Nowadays, vast amount of data can be captured very
rapidly by different means, however, data analysis is not
always straightforward and more often than not an
iterative process. Especially with different data capturing
methods such as positioning, capturing image or audio
data, various data types result that require different
processing methods for data analysis. An effective
visualisation, an integrated view that links multiple data
sources in their context and data processing stages, would
better support the identification of relationships within
multimodal data. Combined in a dashboard, the data can
be utilised together and used for analytical purposes.

An important use and benefit of dashboards is that
dashboards serve as important interfaces for data-driven
decision-making (Park et al., 2010; Sarikaya et al., 2019).

Despite an increasing number of case studies and general
guidelines, there is surprisingly little design guidance for
dashboards (Bach et al., 2022).

In cartography and geography, interactive dashboards are
more than just a technical facilitator, as they are a means
of conducting integrative geovisual analyses. Such tools
provide a basis to combine traditional cartographic
visualisations with modern data science workflows.
Through dynamic linking, researchers can test spatial
hypotheses, monitor urban phenomena or assess policy
impacts in real time and under user control (Macenski et
al., 2022).

This paper is intended as a flexible approach for data
science and machine learning projects to link different
datasets. This approach is applied to a case study of a
railway construction site project for rail track replacement
where a set of sensors, situated on key construction
machines, are deployed to monitor and compare the
construction process to the planned construction
activities.

1.1 Requirements

Interactive dashboards appeal to different target
audiences, including both development-oriented and
management-oriented users (Selby, 2009). Development-
focused users often require dashboards that support
system monitoring, debugging, data processing
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validation, and iterative design, addressing metrics such
as progress, reuse, or cycle time. In contrast,
management-oriented users focus on strategic aspects
such as process compliance, operational risks, and
performance improvement. To meet both perspectives,
dashboards must accommodate a wide range of types of
visualisation and interaction functionalities that enable
users to characterise system states, detect anomalies,
assess risks, and forecast outcomes (Selby, 2009).

A critical requirement for modern dashboards is
flexibility. As Davidson et al. (2022) observed during the
COVID-19 pandemic during dashboard development,
dashboards must adapt to evolving data sources and user
needs. The adaptation and expansion of the data can be
enhanced with raw sensor measurements, context data,
processed data, labelled events, mapping, results and
thresholds. Especially for analysis approaches based on
exploratory visualisations, the analysis results should be
embedded in the dashboard.

The most suitable form of visualisation for data analysis
depends strongly on the specific data structure and the
respective question of analysis, which is why adaptability
is crucial. Therefore, multi-coordinate views (MCV) are
beneficial (Roberts, 2007). MCV systems should be
feature-rich and intuitive to use in order to visualise
results quickly and enable simple investigations (Roberts,
2007). Each widget in an MCV setup represents a
different aspect of the data set, such as a map for spatial
analysis, a time series chart for temporal patterns, a bar
chart for categorical distribution. Importantly, the views
should be interactively linked so that users can explore
relationships between the different data (Roberts, 2007).
In addition to analytical capabilities, interactive
dashboards serve as powerful tools for communication,
collaboration and troubleshooting workflows. This is
particularly valuable in multimodal systems where
complex pre-processing such as temporal alignment,
spatial linking or normalisation of metadata can cause
errors that are difficult to detect in tabular or code-based
formats. As identified by Wongsuphasawat et al. (2016),
visual interfaces that support step-by-step feedback help
to detect inconsistencies, missing data or modelling
assumptions early in the analysis process.

Analytical correctness in interactive dashboards requires
not only accurate data processing, but also the use of
standardised and formalised visual language (Bach et al.,
2022). Inconsistent terminology, unclear visual coding or
ambiguous interactions can undermine the interpretability
and validity of results (Amar, Eagan and Stasko, 2005).
Consistent scales, colour coding, units and naming
schemes support both semantic clarity and analytical
transparency and enable users to trust and reproduce the
results (Schulz et al., 2013).

1.1.1  Multi-Modal Data

The data that flows into a dashboard can be of different
data types. In addition to structured data such as
temperature data, IMU data, GNSS points, log or analysis
outputs (i.e. GNSS sensor is within a predefined zone),
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unstructured data such as audio and video data or digital
elevation models may also be available. There is also
process metadata, which can provide information about
the quality of the data or the presence of missing
measurement data. A multi-view design such as the MCV

is particularly powerful for gaining insights from
multimodal data (Roberts, 2007).

1.1.2  Linking & Brushing

Linking and brushing are foundational interaction

techniques in visual analytics. They support both
analytical goals, such as filtering based on specific
attributes, and perceptual goals, such as identifying and
localising elements across views (Roberts, 2007). Linking
views means that selecting or highlighting data in one
view automatically highlights the corresponding data in
other views. For example, if you select a data point from
one sensor, the time-corresponding points from the other
sensors and the corresponding entries are highlighted.
This allows users to recognise how patterns in one
modality relate to patterns in others.

1.1.3  Scalability

Scalability in multimodal dashboards refers to the ability
of the system to maintain responsive interaction as data
volume and complexity increase. Multimodal datasets
that combine time series, spatial data and categorical
attributes can overwhelm standard interaction techniques
such as brushing and linking, resulting in latency and
visual clutter (Fekete et al., 2008). To solve this problem,
scalable systems apply methods such as data aggregation,
sampling and progressive rendering (Fekete and Primet,
2016). For time series, scalability can be improved by
restricting the analysis to user-defined time windows that
limit the displayed data and reduce the processing load by
focusing only on relevant intervals.

1.2 Case Study

The proposed dashboard framework is adaptable across
various domains, particularly in projects that begin with
exploratory data visualisation as a foundation for deeper
analysis. The case study for the proposed dashboard
concept bases on developing a data capturing and
analysis pipeline for monitoring rail construction sites.
Rail infrastructure projects are subject to strict
construction deadlines. Precise scheduling is critical for
both maintenance and new construction of rail tracks.
Rail infrastructure projects, depending on regulation and
rail operators, face the seamless integration of the
construction schedule in ongoing operation with
synchronized timetables and face conventional penalties
if deadlines are not met. In their literature, Hussain et al.
(2023) emphasize the importance of a unified platform
from planning to the site management in the construction
phase to minimize cost overrun. The combination of the
planned process and its mapping to the state of the
construction site in near real time consolidates both views
and supports decision-making and insights for future
construction sites.
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Real-time tracking of construction progress on rail
construction  sites, enabled by modern sensor
technologies, aims to reduce waiting times and downtime.
The use of data from IoT devices, such as Inertial
Measurement Units (IMU), Global Positioning System
(GPS), and cameras, on key construction machinery
(crane, excavator, and tamping machine) enables the
comparison of planned processes with executed
processes. Mapping sensor data to the process plan is
essential for this comparison. To identify which
algorithm is suitable to analyse and map the captured data
to the process plan, and to model the constraints imposed
on the data, exploratory visualization is suitable for
decision-making.

Another representative example could be its application
in a behavioural observation station for meerkats. In this
context, multiple data streams can be integrated,
including spatial data (GNSS tracking of individuals),
environmental sensor data (temperature, weight sensors at
feeding stations, camera footage), structured planning
data (locations of burrows of distinct subgroups), and
experimental thresholds (call simulation of a bird of
prey). By linking and visualising these heterogeneous
data sources in a coordinated dashboard environment,
researchers can monitor and analyse behavioural
responses in real time like mapping behavioural patterns
to environmental or contextual variables.

2. Methods

This section outlines the design and implementation of an
interactive dashboard to support the development of an
analysis pipeline with multi-modal spatial-temporal data.
The goal is to create a flexible approach that can be
applied to various fields, allowing users to explore
understand and combine the data as well as make data-
based decision

2.1 Design Concept

Our approach is designed to guide a variety of projects in
creating a dashboard for data exploration, data-based
decision-making for analysis methods and thresholds, and
for debugging purposes. The dashboard enables
exploratory data analysis, contextual conclusions and the
discovery of patterns in heterogeneous data sources. This
is achieved through a MCV setup, where each panel or
widget represents a different aspect of the data.

The dashboard must be flexibly customisable to support
various project needs. This means that the data can be
continuously expanded or selected data can be displayed
side-by-side within one panel. For example, combinations
such as the temperature and with food intake metrics
meerkats can be compared to identify potential
behavioural patterns. The visualisation process is
progressive. The data is presented at the beginning with
raw data and allows for successive enrichment with
processed information, contextual overlays, and derived
analysis outputs, culminating in an integrated visual
representation as exemplified Figure 1.
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Figure 1. presents a schematic example of the dashboard
architecture, illustrating how data from the various data sources
as well as the processed data from data source I and the
combination of data from the filtered data from data source III
and the analysis results from data source I are displayed.

A core feature of the dashboard is its support for
multimodal data, which may include spatial, temporal,
categorical, and numerical information. Data elements are
linked through shared attributes such as sensor ID,
observed object, or temporal alignment. The raw data as
well as the processed data and are relevant in the analysis
process. The dashboard should provide an overview of all
data at any given time. Planned data such as a process
workflow or construction plans may be integrated to
provide a comparative reference for interpreting real-
world deviations. In this case study, planned activities
and their activity area are integrated into a dashboard to
enable a direct comparison between the observations by
the sensors and scheduled activities.

In the context of time series, scalability can be improved
by aggregating the data or restricting it to user-defined
time windows. This reduces the amount of data displayed
and reduces the processing load, as only relevant time
ranges are considered.

2.2 Technical Implementation

221

InfluxDB is a time series database designed to efficiently
handle large amounts of time-stamped data of various
types and enriching it with tags. It is particularly well-
suited for applications where monitoring, analytics of
time-stamped data is prevalent. InfluxDB can be used for
the data management of multimodal data. In the
exemplary case study time synchronisation plays a crucial
role, as different sensors may operate in different time
zones or are not properly synchronised. For instance,

Data storage
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GNSS (Global Navigation Satellite System) data may be
captured in GPS time, while temperature measurements
could be recorded in local time. Ensuring time
synchronisation before data storage is essential. Once the
data is properly timestamped, it can be stored and used
for analysis and processing. The data in the database can
then also be used for analysis and processed directly.

Image and video data cannot be directly imported into the
database in their original formats. Image data can be
stored in binary form. Video data is not supported at the
time of writing, but can added as individual images or
frames.

2.2.2  Dashboard

Grafana is typically used for monitoring time series, but
offers flexible panel configurations (as the boxes in figure
1) and supports data connections from various interfaces
such as InfluxDB, allowing us to visualise real-time
sensor data, derived metrics and system states within a
single interface. This capability has been utilised to
display the raw data, its processed results and analysis
results. The various panels can also visualise information
such as the completeness of the data (e.g. the number of
missing values), the detection of outliers (e.g. statistical
thresholds) and the consistency of the metadata (e.g.
discrepancies in timestamps or sensor IDs).

With an established connection from InfluxDB to
Grafana, the panels read and display the data from the
Database. The reading flow of the panels from the top
down starts with the display of the raw sensor data.
Panels with the processed data or analysis results are
added so the order makes sense for the user.

3. Results and Discussion

The developed dashboard integrates multimodal data
sources such as time series, spatial data, and contextual
metadata, into an interactive visual analytics
environment. It enables users to perform exploratory data
analysis using synchronised, linked views that support
brushing, filtering, and the inspection of both raw and
processed data. The system is structured around a multi-
coordinate view setup, with visual components such as
time series plots, spatial maps and images. Users are able
to flexibly select, combine, and compare different types
of data, which supports the identification of threshold or
analysis methods.

This solution meets the needs of development-oriented
and analysis-oriented tasks. It provides support for
debugging, evaluating methods and data insights. The
dashboard demonstrates a high degree of adaptability due
to its modular design.

3.1 Design Concept

Our approach is intended to provide a conceptual
framework for creating flexible, reusable dashboards that
support exploratory data analysis, data-driven decision-
making and debugging in the development phase. A key
objective is to accommodate heterogeneous, multimodal
data by enabling dynamically configurable views that
combine raw inputs, derived metrics and analytical
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results. In line with the concept of MCV, the dashboard
supports comparative analyses through linked panels that
can be customised to the specific requirements of each
project. For example, users can explore relationships
between environmental variables and behavioural data
such as temperature and food intake in meerkats by
selecting relevant datasets and arranging them by time or
entity. To ensure adaptability across different domains,
the dashboard is designed for extensibility. New data
sources can be added incrementally, and visualisations
evolve from raw data representations to complex,
customised views (see Figure 1). The link between the
data sets is achieved through common identifiers such as
sensor IDs, observation units or time intervals, that
ensure semantic consistency between the views. In
addition, scalability is achieved through aggregation and
filtering. In this case study, as an example, this is
achieved through aggregation of GNSS and IMU data,
combined with temporal and categorical filtering for
activity recognition such as “Standing” or “Driving”.

The approach is useful for understanding the data and
making informed decisions about further processing steps
and analysis methods. By comparing the raw data with
the planned data, initial patterns can be identified that
may guide the selection of appropriate analysis
techniques. Further down the dashboard, the processed
data and analysis results are presented, allowing for
immediate validation of the outcomes. This structured
approach not only aids in data analysis but also enhances
system transparency, as all views are designed to
facilitate debugging during the development of the
analysis. It provides researchers with a comprehensive
understanding of the data processing pipeline.

3.2 Technical Implementation

The import of the data to InfluxDB requires specific
preparation, including the conversion of image data into
binary form.

With the integration of various data sources such as
InfluxDB, Grafana can import the data easily and offers a
large number of visualisation elements, which can also be
placed individually. In addition to time series data, tables
or maps, the display of images is supported. This is
particularly useful for debugging in the development
process and cross checking the analysis results with
reference data such as still images of video feeds or maps.
There are certain limitations to the visualisations, such as
a limited colour palette. For example, there are only 6
colours to choose from, but each with 5 different
brightness levels. The key advantage for this use case is
the ease of integration for new visualizations for visual
exploration in the development of the analysis workflow.

3.3 Implemented Case Study

The dashboard in this project investigating several rail
construction sites in Switzerland combines multimodal
data, including spatial, temporal, and contextual data.
Since the sensor box is mounted on the machine, the data
can provide us insights to the movements and activities of
the machine. For example, GPS data provides
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Figure 2. Dashboard in Grafana displayed the sensor data from raw to processed data with the process plan of the rail construction
side. In red highlighted you find the process step of loading train tracks and in blue the unloading of a rail tracks
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geographical information, IMU data offers insights into
movement, and image data captures the environmental
context. Image data are pre-processed and classified
using machine learning (ML) algorithms to recognize
movement patterns of construction machinery.

The dashboard for the case study is shown in Figure 2.
The raw data such as the positions, the camera images
and the IMU data (Rotation & Acceleration) can be found
at the top. Derived from the IMU, movements of the
machine such as rotation to the left or right are shown
under the ‘Rotation Direction’ panel. Activity recognition
processed from the video data with ML is shown in the
‘Activity Recognition’ panel. These are classified by
colour for easy recognition. Then, in the ‘Construction
Zone’ panel, a 2 metre buffer around the construction
zone is used to check whether the machine position is
within a predefined zone. In the ‘Task Recognition
Lifting’ panel, the activity data filtered by ‘Loading...’
filtered activity recognition data is combined with the
position in the construction zone. The aim of this
combination is to investigate whether this combination is
unique to the task of lifting off the track or not. The same
is the aim of the ‘Task Recognition Unloading’ panel,
where the combination of ‘Unload...” and ‘Drive...’
combines filtered activity recognition data with the
position in the designated deposit zone (which the
machine not entered in this time period). The last two
panels show the process plan per item (here the track
units 101 and 102) as they were planned. This is helpful
for categorising and comparing the key moments in the
time series.

Exploratory visualizations enhance understanding of data
dependencies and help uncover limitations in the dataset
that may affect the outcome of the mapping process. The
dashboard synchronizes all data and presents it in
chronological order. The design principle of the
dashboard follows the individual analysis steps of the
workflow from the unprocessed data via the intermediate
results and control methods to the mapping of the
planning data from top to bottom in analogy to the
reading flow. Such a layout supports intuitive data
exploration, where users can trace the transformation
process of the data. The dashboard implements various
intermediate analysis steps that help to investigate the
captured data and machine learning results of the sensor
data. These encompass among other methods the cleaning
and mapping of the GPS data of the construction
machines to different zones of the construction site like
construction zone of the single construction element or
deposit zones, the video classification of machine
movement data with purpose-trained machine learning
methods or threshold-based identification of turns based
on IMU data.

The use of the dashboard in our use case facilitates the
visual exploration and insights of the analysis workflow
combining temporally synchronized heterogeneous data
streams. Analysis of the IMU data revealed that driving a
curve produces output comparable to stationary rotation,
suggesting potential improvements conclusions through
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integration with image data category outputs.
Additionally, GPS data analysis identified a deviation
from the planned process, as unloading of tracks occurred
at an unintended location rather than the designated
deposit zone (see red highlight in Figure 2). The inclusion
of dependencies supports the detection and verification
errors indicating classification errors or deviation from
planned processes.

4. Conclusion

As more and more data is collected and processed, the
need for structured analysis and visualisation will
increase in the future, especially with complex projects.
Having a tool in applied cartographic and monitoring
contexts for the exploration, visualisation, presentation
and debugging of multimodal data all in one saves time
and resources.

The creation of dashboards for time-synchronized
heterogeneous data streams along the analysis workflow
supports the development process of spatial-temporal
data analysis and data science workflows. The dashboard
not only helps in gaining insights into the data but also
facilitates data-driven decision-making and provides
means to validate the results of the mapping process. An
important aspect of the dashboard is its adaptability for
future expansions and their linking with each other. This
allows for the integration of additional data or further
processed data, experimentation with new mapping
methods, or the customization of visual components for
specific use cases. The flexibility of the system is
important for exploratory and decision-making tasks.

Our project benefited from the findings facilitated by
exploratory data visualisation. It supported decisions on
data-based analysis methods and helped defining
threshold values. The continuous embedding of the
analysis results also helps to compare the results with the
raw data.
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