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Abstract: The increasing volume and complexity of multimodal spatio-temporal data requires advanced approach for 
data exploration, integration and interpretation. This paper presents a flexible and extensible dashboard framework 
designed to support data-driven decision-making through interactive visualisation, exploration and analysis. The 
dashboard allows users to interpret structured data such as GNSS, IMU or temperature measurements as well as 
unstructured data types such as image files and contextual metadata. The dashboard follows the principle of combining 
data with reference data and display the process from raw to processed data. The concept is developed both for analysts 
and developers who need to identify suitable methods for analysing data and for subsequent debugging during the 
project. It supports analytical tasks such as pattern recognition, the integration of data sets and the validation of analysis 
results. By using InfluxDB for time series data management and Grafana for dynamic visualisation, the architecture 
ensures high scalability and responsiveness even with complex data sets. A use case from rail infrastructure monitoring 
shows how the dashboard facilitates data-driven insights and improves interpretability by linking multiple data 
perspectives. The integration of raw data, processed results and planned information enables users to align analysis 
results with operational objectives. This paper presents a reusable dashboard approach that improves decision-making 
and visual understanding of multimodal spatio-temporal data in applied cartographic and monitoring contexts. 
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1. Introduction 
Interactive dashboards enable the visual presentation and 
exploration of complex datasets through coordinated 
maps, charts, and tabular views. Dashboards help to 
understand, evaluate and predict the development of data 
(Selby, 2009). Dashboards are used in many areas such as 
healthcare (Alhamadi et al., 2022; Bach et al., 2022; 
Davidson et al., 2022), education (Alhamadi et al., 2022; 
Bach et al., 2022) and urban development (Alhamadi et 
al., 2022; Bach et al., 2022).  
Nowadays, vast amount of data can be captured very 
rapidly by different means, however, data analysis is not 
always straightforward and more often than not an 
iterative process. Especially with different data capturing 
methods such as positioning, capturing image or audio 
data, various data types result that require different 
processing methods for data analysis. An effective 
visualisation, an integrated view that links multiple data 
sources in their context and data processing stages, would 
better support the identification of relationships within 
multimodal data. Combined in a dashboard, the data can 
be utilised together and used for analytical purposes.  
An important use and benefit of dashboards is that 
dashboards serve as important interfaces for data-driven 
decision-making (Park et al., 2010; Sarikaya et al., 2019).  

Despite an increasing number of case studies and general 
guidelines, there is surprisingly little design guidance for 
dashboards (Bach et al., 2022). 
In cartography and geography, interactive dashboards are 
more than just a technical facilitator, as they are a means 
of conducting integrative geovisual analyses. Such tools 
provide a basis to combine traditional cartographic 
visualisations with modern data science workflows. 
Through dynamic linking, researchers can test spatial 
hypotheses, monitor urban phenomena or assess policy 
impacts in real time and under user control (Macenski et 
al., 2022). 
 
This paper is intended as a flexible approach for data 
science and machine learning projects to link different 
datasets. This approach is applied to a case study of a 
railway construction site project for rail track replacement 
where a set of sensors, situated on key construction 
machines, are deployed to monitor and compare the 
construction process to the planned construction 
activities.  

1.1 Requirements 
Interactive dashboards appeal to different target 
audiences, including both development-oriented and 
management-oriented users (Selby, 2009). Development-
focused users often require dashboards that support 
system monitoring, debugging, data processing 
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validation, and iterative design, addressing metrics such 
as progress, reuse, or cycle time. In contrast, 
management-oriented users focus on strategic aspects 
such as process compliance, operational risks, and 
performance improvement. To meet both perspectives, 
dashboards must accommodate a wide range of types of 
visualisation and interaction functionalities that enable 
users to characterise system states, detect anomalies, 
assess risks, and forecast outcomes (Selby, 2009). 
A critical requirement for modern dashboards is 
flexibility. As Davidson et al. (2022) observed during the 
COVID-19 pandemic during dashboard development, 
dashboards must adapt to evolving data sources and user 
needs. The adaptation and expansion of the data can be 
enhanced with raw sensor measurements, context data, 
processed data, labelled events, mapping, results and 
thresholds. Especially for analysis approaches based on 
exploratory visualisations, the analysis results should be 
embedded in the dashboard.  
The most suitable form of visualisation for data analysis 
depends strongly on the specific data structure and the 
respective question of analysis, which is why adaptability 
is crucial. Therefore, multi-coordinate views (MCV) are 
beneficial (Roberts, 2007). MCV systems should be 
feature-rich and intuitive to use in order to visualise 
results quickly and enable simple investigations (Roberts, 
2007). Each widget in an MCV setup represents a 
different aspect of the data set, such as a map for spatial 
analysis, a time series chart for temporal patterns, a bar 
chart for categorical distribution. Importantly, the views 
should be interactively linked so that users can explore 
relationships between the different data (Roberts, 2007). 
In addition to analytical capabilities, interactive 
dashboards serve as powerful tools for communication, 
collaboration and troubleshooting workflows. This is 
particularly valuable in multimodal systems where 
complex pre-processing such as temporal alignment, 
spatial linking or normalisation of metadata can cause 
errors that are difficult to detect in tabular or code-based 
formats. As identified by Wongsuphasawat et al. (2016), 
visual interfaces that support step-by-step feedback help 
to detect inconsistencies, missing data or modelling 
assumptions early in the analysis process.  
Analytical correctness in interactive dashboards requires 
not only accurate data processing, but also the use of 
standardised and formalised visual language (Bach et al., 
2022). Inconsistent terminology, unclear visual coding or 
ambiguous interactions can undermine the interpretability 
and validity of results (Amar, Eagan and Stasko, 2005). 
Consistent scales, colour coding, units and naming 
schemes support both semantic clarity and analytical 
transparency and enable users to trust and reproduce the 
results (Schulz et al., 2013).  

1.1.1 Multi-Modal Data 
The data that flows into a dashboard can be of different 
data types. In addition to structured data such as 
temperature data, IMU data, GNSS points, log or analysis 
outputs (i.e. GNSS sensor is within a predefined zone), 

unstructured data such as audio and video data or digital 
elevation models may also be available. There is also 
process metadata, which can provide information about 
the quality of the data or the presence of missing 
measurement data. A multi-view design such as the MCV 
is particularly powerful for gaining insights from 
multimodal data (Roberts, 2007).  
1.1.2 Linking & Brushing 
Linking and brushing are foundational interaction 
techniques in visual analytics. They support both 
analytical goals, such as filtering based on specific 
attributes, and perceptual goals, such as identifying and 
localising elements across views (Roberts, 2007). Linking 
views means that selecting or highlighting data in one 
view automatically highlights the corresponding data in 
other views. For example, if you select a data point from 
one sensor, the time-corresponding points from the other 
sensors and the corresponding entries are highlighted. 
This allows users to recognise how patterns in one 
modality relate to patterns in others. 
1.1.3 Scalability 
Scalability in multimodal dashboards refers to the ability 
of the system to maintain responsive interaction as data 
volume and complexity increase. Multimodal datasets 
that combine time series, spatial data and categorical 
attributes can overwhelm standard interaction techniques 
such as brushing and linking, resulting in latency and 
visual clutter (Fekete et al., 2008). To solve this problem, 
scalable systems apply methods such as data aggregation, 
sampling and progressive rendering (Fekete and Primet, 
2016). For time series, scalability can be improved by 
restricting the analysis to user-defined time windows that 
limit the displayed data and reduce the processing load by 
focusing only on relevant intervals. 

1.2 Case Study 
The proposed dashboard framework is adaptable across 
various domains, particularly in projects that begin with 
exploratory data visualisation as a foundation for deeper 
analysis. The case study for the proposed dashboard 
concept bases on developing a data capturing and 
analysis pipeline for monitoring rail construction sites. 
Rail infrastructure projects are subject to strict 
construction deadlines. Precise scheduling is critical for 
both maintenance and new construction of rail tracks. 
Rail infrastructure projects, depending on regulation and 
rail operators, face the seamless integration of the 
construction schedule in ongoing operation with 
synchronized timetables and face conventional penalties 
if deadlines are not met. In their literature, Hussain et al. 
(2023) emphasize the importance of a unified platform 
from planning to the site management in the construction 
phase to minimize cost overrun. The combination of the 
planned process and its mapping to the state of the 
construction site in near real time consolidates both views 
and supports decision-making and insights for future 
construction sites. 
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Real-time tracking of construction progress on rail 
construction sites, enabled by modern sensor 
technologies, aims to reduce waiting times and downtime. 
The use of data from IoT devices, such as Inertial 
Measurement Units (IMU), Global Positioning System 
(GPS), and cameras, on key construction machinery 
(crane, excavator, and tamping machine) enables the 
comparison of planned processes with executed 
processes. Mapping sensor data to the process plan is 
essential for this comparison. To identify which 
algorithm is suitable to analyse and map the captured data 
to the process plan, and to model the constraints imposed 
on the data, exploratory visualization is suitable for 
decision-making. 
Another representative example could be its application 
in a behavioural observation station for meerkats. In this 
context, multiple data streams can be integrated, 
including spatial data (GNSS tracking of individuals), 
environmental sensor data (temperature, weight sensors at 
feeding stations, camera footage), structured planning 
data (locations of burrows of distinct subgroups), and 
experimental thresholds (call simulation of a bird of 
prey). By linking and visualising these heterogeneous 
data sources in a coordinated dashboard environment, 
researchers can monitor and analyse behavioural 
responses in real time like mapping behavioural patterns 
to environmental or contextual variables. 

2. Methods
This section outlines the design and implementation of an 
interactive dashboard to support the development of an 
analysis pipeline with multi-modal spatial-temporal data. 
The goal is to create a flexible approach that can be 
applied to various fields, allowing users to explore 
understand and combine the data as well as make data-
based decision 

2.1 Design Concept 
Our approach is designed to guide a variety of projects in 
creating a dashboard for data exploration, data-based 
decision-making for analysis methods and thresholds, and 
for debugging purposes. The dashboard enables 
exploratory data analysis, contextual conclusions and the 
discovery of patterns in heterogeneous data sources. This 
is achieved through a MCV setup, where each panel or 
widget represents a different aspect of the data. 
The dashboard must be flexibly customisable to support 
various project needs. This means that the data can be 
continuously expanded or selected data can be displayed 
side-by-side within one panel. For example, combinations 
such as the temperature and with food intake metrics 
meerkats can be compared to identify potential 
behavioural patterns. The visualisation process is 
progressive. The data is presented at the beginning with 
raw data and allows for successive enrichment with 
processed information, contextual overlays, and derived 
analysis outputs, culminating in an integrated visual 
representation as exemplified Figure 1. 

Figure 1. presents a schematic example of the dashboard 
architecture, illustrating how data from the various data sources 
as well as the processed data from data source I and the 
combination of data from the filtered data from data source III 
and the analysis results from data source I are displayed. 

A core feature of the dashboard is its support for 
multimodal data, which may include spatial, temporal, 
categorical, and numerical information. Data elements are 
linked through shared attributes such as sensor ID, 
observed object, or temporal alignment. The raw data as 
well as the processed data and are relevant in the analysis 
process. The dashboard should provide an overview of all 
data at any given time. Planned data such as a process 
workflow or construction plans may be integrated to 
provide a comparative reference for interpreting real-
world deviations. In this case study, planned activities 
and their activity area are integrated into a dashboard to 
enable a direct comparison between the observations by 
the sensors and scheduled activities. 
In the context of time series, scalability can be improved 
by aggregating the data or restricting it to user-defined 
time windows. This reduces the amount of data displayed 
and reduces the processing load, as only relevant time 
ranges are considered. 

2.2 Technical Implementation 

2.2.1 Data storage 
InfluxDB is a time series database designed to efficiently 
handle large amounts of time-stamped data of various 
types and enriching it with tags. It is particularly well-
suited for applications where monitoring, analytics of 
time-stamped data is prevalent. InfluxDB can be used for 
the data management of multimodal data. In the 
exemplary case study time synchronisation plays a crucial 
role, as different sensors may operate in different time 
zones or are not properly synchronised. For instance, 
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GNSS (Global Navigation Satellite System) data may be 
captured in GPS time, while temperature measurements 
could be recorded in local time. Ensuring time 
synchronisation before data storage is essential. Once the 
data is properly timestamped, it can be stored and used 
for analysis and processing. The data in the database can 
then also be used for analysis and processed directly. 
Image and video data cannot be directly imported into the 
database in their original formats. Image data can be 
stored in binary form. Video data is not supported at the 
time of writing, but can added as individual images or 
frames.  
2.2.2 Dashboard 
Grafana is typically used for monitoring time series, but 
offers flexible panel configurations (as the boxes in figure 
1) and supports data connections from various interfaces
such as InfluxDB, allowing us to visualise real-time
sensor data, derived metrics and system states within a
single interface. This capability has been utilised to
display the raw data, its processed results and analysis
results. The various panels can also visualise information
such as the completeness of the data (e.g. the number of
missing values), the detection of outliers (e.g. statistical
thresholds) and the consistency of the metadata (e.g.
discrepancies in timestamps or sensor IDs).
With an established connection from InfluxDB to
Grafana, the panels read and display the data from the
Database. The reading flow of the panels from the top
down starts with the display of the raw sensor data.
Panels with the processed data or analysis results are
added so the order makes sense for the user.

3. Results and Discussion
The developed dashboard integrates multimodal data 
sources such as time series, spatial data, and contextual 
metadata, into an interactive visual analytics 
environment. It enables users to perform exploratory data 
analysis using synchronised, linked views that support 
brushing, filtering, and the inspection of both raw and 
processed data. The system is structured around a multi-
coordinate view setup, with visual components such as 
time series plots, spatial maps and images. Users are able 
to flexibly select, combine, and compare different types 
of data, which supports the identification of threshold or 
analysis methods. 
This solution meets the needs of development-oriented 
and analysis-oriented tasks. It provides support for 
debugging, evaluating methods and data insights. The 
dashboard demonstrates a high degree of adaptability due 
to its modular design. 

3.1 Design Concept 
Our approach is intended to provide a conceptual 
framework for creating flexible, reusable dashboards that 
support exploratory data analysis, data-driven decision-
making and debugging in the development phase. A key 
objective is to accommodate heterogeneous, multimodal 
data by enabling dynamically configurable views that 
combine raw inputs, derived metrics and analytical 

results. In line with the concept of MCV, the dashboard 
supports comparative analyses through linked panels that 
can be customised to the specific requirements of each 
project. For example, users can explore relationships 
between environmental variables and behavioural data 
such as temperature and food intake in meerkats by 
selecting relevant datasets and arranging them by time or 
entity. To ensure adaptability across different domains, 
the dashboard is designed for extensibility. New data 
sources can be added incrementally, and visualisations 
evolve from raw data representations to complex, 
customised views (see Figure 1). The link between the 
data sets is achieved through common identifiers such as 
sensor IDs, observation units or time intervals, that 
ensure semantic consistency between the views. In 
addition, scalability is achieved through aggregation and 
filtering. In this case study, as an example, this is 
achieved through aggregation of GNSS and IMU data, 
combined with temporal and categorical filtering for 
activity recognition such as “Standing” or “Driving”.  
The approach is useful for understanding the data and 
making informed decisions about further processing steps 
and analysis methods. By comparing the raw data with 
the planned data, initial patterns can be identified that 
may guide the selection of appropriate analysis 
techniques. Further down the dashboard, the processed 
data and analysis results are presented, allowing for 
immediate validation of the outcomes. This structured 
approach not only aids in data analysis but also enhances 
system transparency, as all views are designed to 
facilitate debugging during the development of the 
analysis. It provides researchers with a comprehensive 
understanding of the data processing pipeline. 

3.2 Technical Implementation 
The import of the data to InfluxDB requires specific 
preparation, including the conversion of image data into 
binary form.  
With the integration of various data sources such as 
InfluxDB, Grafana can import the data easily and offers a 
large number of visualisation elements, which can also be 
placed individually. In addition to time series data, tables 
or maps, the display of images is supported. This is 
particularly useful for debugging in the development 
process and cross checking the analysis results with 
reference data such as still images of video feeds or maps. 
There are certain limitations to the visualisations, such as 
a limited colour palette. For example, there are only 6 
colours to choose from, but each with 5 different 
brightness levels. The key advantage for this use case is 
the ease of integration for new visualizations for visual 
exploration in the development of the analysis workflow. 

3.3 Implemented Case Study 
The dashboard in this project investigating several rail 
construction sites in Switzerland combines multimodal 
data, including spatial, temporal, and contextual data. 
Since the sensor box is mounted on the machine, the data 
can provide us insights to the movements and activities of 
the machine. For example, GPS data provides 
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Figure 2. Dashboard in Grafana displayed the sensor data from raw to processed data with the process plan of the rail construction 
side. In red highlighted you find the process step of loading train tracks and in blue the unloading of a rail tracks 
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geographical information, IMU data offers insights into 
movement, and image data captures the environmental 
context. Image data are pre-processed and classified 
using machine learning (ML) algorithms to recognize 
movement patterns of construction machinery.  
The dashboard for the case study is shown in Figure 2. 
The raw data such as the positions, the camera images 
and the IMU data (Rotation & Acceleration) can be found 
at the top. Derived from the IMU, movements of the 
machine such as rotation to the left or right are shown 
under the ‘Rotation Direction’ panel. Activity recognition 
processed from the video data with ML is shown in the 
‘Activity Recognition’ panel. These are classified by 
colour for easy recognition. Then, in the ‘Construction 
Zone’ panel, a 2 metre buffer around the construction 
zone is used to check whether the machine position is 
within a predefined zone. In the ‘Task Recognition 
Lifting’ panel, the activity data filtered by ‘Loading...’ 
filtered activity recognition data is combined with the 
position in the construction zone. The aim of this 
combination is to investigate whether this combination is 
unique to the task of lifting off the track or not. The same 
is the aim of the ‘Task Recognition Unloading’ panel, 
where the combination of ‘Unload...’ and ‘Drive...’ 
combines filtered activity recognition data with the 
position in the designated deposit zone (which the 
machine not entered in this time period). The last two 
panels show the process plan per item (here the track 
units 101 and 102) as they were planned. This is helpful 
for categorising and comparing the key moments in the 
time series. 
Exploratory visualizations enhance understanding of data 
dependencies and help uncover limitations in the dataset 
that may affect the outcome of the mapping process. The 
dashboard synchronizes all data and presents it in 
chronological order. The design principle of the 
dashboard follows the individual analysis steps of the 
workflow from the unprocessed data via the intermediate 
results and control methods to the mapping of the 
planning data from top to bottom in analogy to the 
reading flow. Such a layout supports intuitive data 
exploration, where users can trace the transformation 
process of the data. The dashboard implements various 
intermediate analysis steps that help to investigate the 
captured data and machine learning results of the sensor 
data. These encompass among other methods the cleaning 
and mapping of the GPS data of the construction 
machines to different zones of the construction site like 
construction zone of the single construction element or 
deposit zones, the video classification of machine 
movement data with purpose-trained machine learning 
methods or threshold-based identification of turns based 
on IMU data. 
The use of the dashboard in our use case facilitates the 
visual exploration and insights of the analysis workflow 
combining temporally synchronized heterogeneous data 
streams. Analysis of the IMU data revealed that driving a 
curve produces output comparable to stationary rotation, 
suggesting potential improvements conclusions through 

integration with image data category outputs. 
Additionally, GPS data analysis identified a deviation 
from the planned process, as unloading of tracks occurred 
at an unintended location rather than the designated 
deposit zone (see red highlight in Figure 2). The inclusion 
of dependencies supports the detection and verification 
errors indicating classification errors or deviation from 
planned processes. 

4. Conclusion
As more and more data is collected and processed, the 
need for structured analysis and visualisation will 
increase in the future, especially with complex projects. 
Having a tool in applied cartographic and monitoring 
contexts for the exploration, visualisation, presentation 
and debugging of multimodal data all in one saves time 
and resources. 
The creation of dashboards for time-synchronized 
heterogeneous data streams along the analysis workflow 
supports the development process of spatial-temporal 
data analysis and data science workflows. The dashboard 
not only helps in gaining insights into the data but also 
facilitates data-driven decision-making and provides 
means to validate the results of the mapping process. An 
important aspect of the dashboard is its adaptability for 
future expansions and their linking with each other. This 
allows for the integration of additional data or further 
processed data, experimentation with new mapping 
methods, or the customization of visual components for 
specific use cases. The flexibility of the system is 
important for exploratory and decision-making tasks. 
Our project benefited from the findings facilitated by 
exploratory data visualisation. It supported decisions on 
data-based analysis methods and helped defining 
threshold values. The continuous embedding of the 
analysis results also helps to compare the results with the 
raw data. 
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