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Abstract: Point cloud semantic segmentation is a critical task in autonomous driving and digital twin applications. 
This study introduces a novel semantic segmentation approach leveraging the PointMamba network, specifically designed 
to address the challenges of complex urban scene point cloud data. The PointMamba network integrates a state space 
model (SSM) with point cloud serialization and advanced feature extraction techniques, yielding significant performance 
improvements in semantic segmentation tasks. PointMamba was rigorously evaluated on the Toronto3D urban scene point 
cloud dataset, achieving an Overall Accuracy (OA) of 93.94% and a mean Intersection over Union (mIoU) of 66.03%. 
Comparative studies demonstrated that PointMamba outperformed existing point-based methods, including PointNet++ 
and PointNet, in handling intricate urban environments, delivering superior semantic segmentation outcomes on complex 
urban road environments.
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1. Introduction

LiDAR scanning technology has become widely adopted
in autonomous driving, remote sensing, and mobile map-
ping due to its ability to efficiently acquire high-precision
3D point cloud data (Long et al., 2021). Compared to tradi-
tional methods, LiDAR-based 3D data acquisition demon-
strates superior efficiency, accuracy, and adaptability across
diverse environments (Ma et al., 2018). In point cloud pro-
cessing, semantic segmentation involves clustering the in-
put data into homogeneous regions, where points within
the same region share identical attributes (Nguyen and Le,
2013). As a high-level task, semantic segmentation is crit-
ical for scene understanding and has become an essential
component in complex scene analysis and digital twin con-
struction (Yang et al., 2022).

Traditional rule-based approaches for point cloud classi-
fication and segmentation typically rely on manually ex-
tracted features combined with machine learning algorithms
to build discriminative models (Li et al., 2024). However,
in complex urban environments, LiDAR point clouds are
often sparse, unordered, and heavily affected by noise and
outliers, significantly limiting the effectiveness of such tra-
ditional methods. In contrast, deep neural networks have
emerged as the dominant approach for point cloud seman-
tic segmentation, owing to their superior feature learning
capabilities (Yang et al., 2022).

More recently, Mamba model, a new network backbone
using the State Space Model (SSM) (Gu et al., 2021), has
achieved superior context learning capability in the pro-
cessing of sequence data. Accordingly, PointMamba model

was designed for the classification and part segmentation
tasks using point clouds collected in indoor environments
(Liang et al., 2024), which outperformed most transformer-
based nerural networks.

Thus, this paper extends PointMamba for the first time to
semantic segmentation of large-scale outdoor point clouds,
significantly enhancing its capability to process urban-scale
data. Feature extraction in PointMamba consists of two
branches. The first extracts features through N stacked
PointMamba Blocks, selecting three representative layers
for global feature concatenation. The second maps features
to individual points using PointNet++’s feature propaga-
tion. Global and per-point features are then concatenated
and passed to the segmentation head for final predictions.

The main contributions of this study are three-fold: (1) The
PointMamba model was extended to point cloud seman-
tic segmentation for the first time and evaluated in com-
plex urban environments, demonstrating its effectiveness
in large-scale segmentation tasks. (2) The efficiency and
applicability of PointMamba were validated through com-
parative experiments with the PointNet series, particularly
in handling complex and fine-grained structures. (3) To
further enhance segmentation performance, the Block Di-
vision strategy was integrated into the PointMamba frame-
work, optimizing point cloud data organization, and im-
proving the model’s ability to learn inherent local features.

2. Related Works

Point cloud semantic segmentation represents a fundamen-
tal task in 3D data processing, facilitating a deeper un-
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Figure 1. Architecture of the PointMamba network.

derstanding of data patterns and enabling precise identi-
fication of both global and local relationships among cat-
egories or features in specific scenarios. Currently, point
cloud semantic segmentation methods can be categorized
into two approaches: point-based methods and Transformer-
based methods.

Point-Based Segmentation: The inherent disorder and trans-
lational invariance of point clouds in 3D space pose chal-
lenges to the direct application of traditional 2D and 3D
convolutional neural networks. To solve this problem, point-
based segmentation methods have been proposed. Point-
Net, as a pioneering work in directly processing point clouds,
leveraged permutation invariance and utilized shared MLPs
and symmetric pooling to capture global features (Qi et al.,
2017a). However, its reliance on max pooling restricted
its ability to model local structures. PointNet++ addressed
this limitation by introducing a hierarchical framework that
segmented point clouds into overlapping regions, extracted
local features using modified PointNet operations, and hi-
erarchically aggregated them to capture global representa-
tions (Qi et al., 2017b). Techniques such as farthest point
sampling (FPS) and ball-query algorithms enable Point-
Net++ to effectively handle varying densities and scales,
excelling in tasks like object recognition and semantic seg-
mentation. Further advancements, such as point convo-
lution, adaptively learn weight functions from geometric
information. For instance, RSNet employed 1×1 convolu-
tions to extract point-wise features, which were processed
through a Local Dependency Module (LDM) to capture
local context, thereby enhancing segmentation accuracy in
complex 3D scenarios (Huang et al., 2018).

Transformer-based approaches: Transformers are well-
known due to their attention mechanisms, with self-attention
as the core component and positional encoding enabling
the modeling of token order within sequences. Positional
encoding is crucial for capturing relative positional rela-
tionships. Accordingly, Point Transformer integrated MLP-
based positional encoding into vectorized attention and in-
corporated a KNN-based downsampling module to reduce
point resolution (Zhao et al., 2021). Point Transformer v2
refines the baseline by introducing encoding multipliers for
relational vectors and a partition-based pooling strategy to
better align geometric information (Wu et al., 2022). Fast-
PointTransformer simplified the architecture with a lightweight
local self-attention module that efficiently learned positional
information while reducing spatial complexity (Park et al.,
2022). Point Transformer v3 further enhanced efficiency

Figure 2. Structure of the Mamba Block.

by replacing KNN-based neighborhood searches with seri-
alized neighborhood mapping, enabling broader receptive
field coverage (Wu et al., 2024).

3. Methods

Fig.1 illustrates the PointMamba architecture designed for
point cloud semantic segmentation in urban scenarios. The
following sections provide a detailed explanation of each
component of the PointMamba.

3.1 Block Division

Given the large volume of point cloud data, the scene is
first divided into smaller blocks to accelerate computation
during the training process. Cross-validation testing deter-
mines the block size to be 10m × 10m, and 16,000 points
are randomly sampled within each block, potentially in-
cluding duplicates. The normals are calculated using a
0.8 m radius and a neighborhood size of 30 points. This
radius balances between preserving fine-grained geometry
and ensuring computational efficiency in densely sampled
urban scenes. While optimized for the Toronto3D dataset,
this parameter may need adjustment when applying the
method to sparser or denser environments.The input fea-
tures for each point include the coordinates offset from the
UTM origin, the normal vector, and the point intensity. Al-
though the number of returns is also informative, it is not
included in the Toronto3D dataset used in this study.

Additionally, the proposed block division method spatially
adjacent points into the same data block, which facilitates
the model’s ability to more effectively learn local features,
such as surface textures and geometric shapes, contributing
to capturing fine-grained spatial structures.

3.2 FPS and KNN

After the block division, the Farthest Point Sampling (FPS)
method is applied to uniformly sample points within each
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block, ensuring a spatially even distribution of the sampled
points (Qi et al., 2017a), which is widely recognized for its
efficiency in downsampling large-scale point cloud data.
Subsequently, the K-Nearest Neighbors (KNN) algorithm
is employed to construct local neighborhood relationships
for each sampled point, facilitating the capture of local ge-
ometric features. To reduce overfitting to point order and
enhance generalization, the input order of the point cloud
is randomly permuted within each batch, while the XYZ
coordinates themselves remain unchanged. This technique
increases the robustness of the model to point ordering,
which is arbitrary in unstructured point clouds.

3.3 Token Embedding

The PointMamba framework maps unbiased local patches
into the feature space through a lightweight PointNet-based
point embedding layer (Qi et al., 2017a), resulting in seri-
alized point tokens E0h ∈ Rn×C, which are derived from a
random sequence representation.

3.4 The Mamba Block

After the token embedding layer, the output is fed into the
Mamba Block, which is a core component of the Point-
Mamba network. As illustrated in Fig.2, the Mamba Block
is designed to efficiently capture both local and global fea-
ture interactions. It follows a structured pipeline that in-
tegrates normalization, linear transformations, depthwise
convolutions, and selective state-space modeling. This ar-
chitecture refines spatial features and enhances the net-
work’s representational capacity. The detailed process is
as follows:

Layer Norm. The Layer Normalization (LN) operation
normalizes the input feature x to stabilize training and pre-
pares the data for subsequent transformations. The nor-
malization process is mathematically defined as follows:

LN(x) = γ ⊙ x− µ̂

σ̂
+β (1)

where µ̂ and σ̂ represent the mean and standard deviation
of the input x, respectively. γ and β are learnable parame-
ters that scale and shift the normalized inputs, respectively.
⊙ denotes the element-wise multiplication.

Linear Transformation. The normalized input is passed
through a linear transformation to project it into a higher-
dimensional space. The transformation is represented by:

Yn×m = Xn×oWo×m +bn×1, (2)

where Xn×o represents the normalized input features. Wo×m
and bn×1 are learnable parameters, denoting the weight
matrix and bias term, respectively. Yn×m is the output fea-
ture matrix projected into a higher-dimensional space.

Depthwise Convolution (DWConv). A depthwise convo-
lution is applied to enhance local feature interactions, fo-
cusing on nearby spatial relationships using the following
equation:

hdwconv(t) = ReLU(DWConv(hlinear1(t))) (3)

Selective State Space Model. Inspired by control theory,
the state-space model (SSM) is conceptualized as a linear
time-invariant system that transforms an input sequence
x(t) ∈ RL into an output sequence y(t) ∈ RL. Formally, it
is characterized by a set of ordinary differential equations
(ODEs) as follows:

ḣ(t) = Ah(t)+Bx(t), (4)
y(t) =Ch(t)+Dx(t), (5)

Residual Connections. The block incorporates residual
connections to preserve information flow and improve gra-
dient propagation. Two residual paths are used. One path
adds the output of the SSM module back to the input after
an additional linear transformation as follows:

hres1(t) =W2hSSM(t)+b2 (6)

Another path directly connects the input of the block to the
final output as follows:

hout(t) = hres1(t)+h(t) (7)

3.5 The Feature Fusion

After feature extraction through eleven stacked Mamba Blocks,
features from the 3rd, 7th, and 11th layers are fused to
form global features, denoted as fi. These global features
are subsequently integrated with per-point features f k

i , ex-
tracted using a lightweight PointNet++ module. The inte-
gration is expressed by:

f h
i = concat( fi, f k

i ) (8)

where fi indicates the global feature aggregated from the
3rd, 7th, and 11th layers of the Mamba Block. f k

i rep-
resents the local per-point feature extracted by the Point-
Net++ module. f h

i is the final fused feature, which com-
bines global and local features. The fused features f h

i en-
able precise and fine-grained semantic segmentation of the
point cloud.

4. Experiments Results And Discussion

4.1 Dataset

In this study, the Toronto3D dataset (Tan et al., 2020), which
was a LiDAR point cloud dataset designed for urban scene
analysis, was used to train and evaluate the PointMamba
method. It was collected using a Mobile LiDAR Scanner
(MLS) system, representing urban streetscapes and span-
ning a wide area encompassing both sides of the road. This
comprehensive coverage provides an excellent benchmark
for assessing the ability of the PointMamba method to ex-
tract detailed urban facade information effectively. More
specifically, L001, L003, and L004 tiles were selected as
the training set, and the L002 tile was used as the validation
and testing set.

Proceedings of the International Cartographic Association, 7, 16, 2025 | https://doi.org/10.5194/ica-proc-7-16-2025 
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. 
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.



4 of 5

Figure 3. Comparison of visualization results on the Toronto3D dataset.

Figure 4. Comparison of visualization results on the Toronto3D dataset, where A to D represent four close-view areas.

Table 1. Quantitative Result of Segmentation Performance compared with PointMamba in OA, mIoU, and class IoUs.
Bold values indicate the best model performance.

Method OA mIoU Road Road mrk Natural Building Util line Pole Car Fence

PointNet 75.71 30.14 89.0 40.6 27.1 22.6 28.8 6.1 24.7 2.2
PointNet++ 84.16 43.42 91.9 35.8 56.0 46.2 47.1 18.4 51.9 0
PointMamba 93.94 66.03 93.9 47.1 91.8 88.0 32.3 78.7 81.4 15.1

4.2 Experiments Settings

All experiments were conducted on a desktop computer
equipped with an Intel Core i5-14600F CPU, an NVIDIA
GeForce RTX 4070 Super GPU (12GB), and 32GB of RAM.
The model was implemented using PyTorch 1.13.0 with

CUDA 11.7 in a Python 3.9 environment. For PointMamba,
the input point number per batch was set to 16,384, with
training and testing batch sizes of 2 and 4, respectively.
The training process consisted of 200 epochs. The model
was optimized using the AdamW optimizer, with a 5% re-
duction in the learning rate after each epoch. The number
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of nearest neighbors K was set to 32. The final trained
model was evaluated using Overall Accuracy (OA), per-
class Intersection over Union (IoU), and mean Intersection
over Union (mIoU) to comprehensively assess the perfor-
mance of PointMamba.

4.3 Experimental Results and Discussion

Fig.3 presents the qualitative semantic segmentation re-
sults across different models, including the proposed Point-
Mamba PointNet++, and PointNet, alongside the ground
truth and the original point cloud (RGB). Additionally, four
representative regions (A, B, C, D) from the Toronto3D
testing set were selected to evaluate the segmentation per-
formance in complex urban scenarios (see Fig.4).

Table 1 provides the quantitative evaluation, showing that
PointMamba achieved strong segmentation performance in
complex urban environments. The comparative results demon-
strated the superiority of PointMamba over PointNet and
PointNet++ in semantic segmentation tasks. Quantitatively,
PointMamba achieved significantly higher OA (93.94%)
and mIoU (66.03%) compared to PointNet (75.71%, 30.14%)
and PointNet++ (84.16%, 43.42%). It excelled in key cate-
gories such as natural surfaces (91.8%), buildings (88.0%),
and cars (81.4%). Additionally, PointMamba exhibited a
distinct advantage in segmenting fine-grained structures,
including poles (78.7%) and fences (15.1%), with notable
reductions in omissions and misclassifications.

Despite its strengths, some limitations remain. In region A,
certain pole-like structures were misclassified as buildings,
while in region C, parts of trees were incorrectly labeled as
buildings. Similarly, in region D, some road points were
misclassified as road markings. These errors likely arise
from PointMamba’s limited capacity to effectively capture
local-scale features, posing challenges in segmenting fine-
grained structures.

5. Conclusion

This study extends the PointMamba network to seman-
tic segmentation in complex urban environments and sys-
tematically evaluates its performance on urban-scale point
clouds. Results show that PointMamba achieves excellent
performance, with an OA of 93.94% and mIoU of 66.03%,
significantly outperforming classical models like PointNet
and PointNet++. It excels in key categories such as natural
surfaces, buildings, and cars, and shows clear advantages
in segmenting fine-grained structures like poles and fences.
Future work will incorporate advanced multi-scale feature
extraction to improve accuracy and extend PointMamba to
other datasets and domains, validating its robustness for
autonomous driving and smart cities.
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