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Abstract: As urban populations continue to expand, understanding the patterns of urban crimes becomes increasingly
important for public safety and prevention strategies. This study uses spatiotemporal autoregressive integrated moving
average (STARIMA) and geographical random forest (GRF) models to explore and compare the dynamics of two distinct
categories of crime as classified by the Federal Bureau of Investigation: crimes against persons (e.g., assault, rape) and
crimes against property (e.g., burglary, vandalism). While STARIMA is a well-established method for capturing linear
spatiotemporal dependencies, GRF integrates spatial heterogeneity and nonlinear relationships through local weighting.
Our results show that GRF consistently outperforms STARIMA across both crime types, particularly for property crimes,
where broader temporal trends and spatially variable patterns play a stronger role. This work demonstrates the importance
of disaggregating crime by type and selecting modeling approaches that accommodate the unique spatial and temporal
characteristics of each. The results provide a deeper understanding of crime prediction and guidance for data-driven

policing strategies.
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1. Introduction

Urban crime remains a persistent concern in modern cities
as it influences public safety, local economics, and the
allocation of policing resources (Hess et al., 2014, LeClerc
and Savona, 2017, van Koppen et al., 2010). As urban
environments grow more dynamic and complex, the need
for timely and accurate prediction of crime patterns
becomes increasingly urgent (Neuilly et al., 2011, Wolff
and Asche, 2009). The pattern of crime is inherently
spatiotemporal in nature, which emerges from the
interaction of social behaviors, environmental contexts,
built environment, and routine human mobility patterns
(Alexander and Xiang, 1994). Thus, understanding the
spatial and temporal dynamics of crime is essential for
effective intervention strategies and long-term urban
planning (Ratcliffe, 2004, Weisburd et al., 2004).

A wide variety of analytical approaches have been
developed for crime prediction. Traditional statistical
methods such as regression analysis have been widely used
to examine the correlation between crime rates and socio-
demographic or environmental variables (Anselin et al.,
2000, Boggs, 1965). Kernel density estimation and other
hotspot mapping techniques are commonly employed to
visualize concentrations of criminal activity across space
(Chainey and Ratcliffe, 2005, Rennison and Hart, 2019).
However, these methods often neglect the temporal
dimension or treat time as a static factor.

To address crime’s dynamic nature, temporal prediction
methods based on time series analysis have been adopted
and refined for crime predictions. For example, the
autoregressive integrated moving average (ARIMA)
model and its seasonal variants have been applied to crime
count data to capture recurring temporal trends and cycles

(Anderson, 1985, Gorr and Harries, 2003, Yuan, 2017,
Yuan and Wylie, 2024). Among the more spatially
grounded methods, the spatiotemporal autoregressive
integrated moving average (STARIMA) model provides a
structured framework for incorporating both spatial
autocorrelation and temporal dependency (Kamarianakis,
2006, Liu and Lu, 2019). STARIMA has been effectively
used in fields such as traffic forecasting (Min et al., 2009),
climate monitoring (Munandar et al., 2023), and crime
analysis (Liu and Lu, 2019).

More recently, machine learning models such as decision
trees, random forests, support vector machines, and deep
learning architectures have gained popularity for their
ability to handle large-scale and high-dimensional datasets
(Shah et al., 2021, Wang et al., 2013). These approaches
offer high predictive performance but are sometimes
criticized for their limited interpretability and lack of
integration with spatial theory or geographic context
(Perry et al., 2013). A machine learning approach to
addressing these challenges is the geographical random
forest (GRF) model, which combines regular random
forests with spatially varying coefficients (Georganos et
al., 2021). The spatially-aware nature of the approach
allows the model to capture how crime patterns vary
depending on local factors, such as socioeconomic status,
infrastructure, and population density; therefore, it has
been proven effective in several studies (Sun et al., 2024,
Wu et al., 2024).

However, although spatially aware models like STARIMA
and GRF are effective in predicting space-time series, most
crime-related applications of these models focus on overall
crime counts or aggregate categories  without
differentiating between crime types. This lack of
differentiation poses a significant limitation. Crimes
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against persons, such as assault or sexual violence, are
often influenced by social interaction patterns and may
display different spatial diffusion behaviors compared to
crimes against property, such as burglary or vandalism,
which may be more opportunistic and location-specific
(Cohen and Felson, 1979, Groff and La Vigne, 2002).
Aggregating these distinct types of crime into a single
modeling framework may overlook important details and
reduce predictive performance.

Motivated by this gap, the present study applies the
STARIMA and GRF models to separately analyze and
compare the spatiotemporal patterns of crimes against
persons and crimes against property in Austin, Texas.
Drawing on two years of detailed incident-level crime data
from 2022 to 2023, we aim to evaluate how well these two
predictive models perform for each crime category and
whether distinct spatial or temporal structures emerge. Our
study seeks to provide better insights into the dynamics of
urban crime and inform more effective prevention
strategies.

2. Background

Although much research modeling spatiotemporal crime
patterns includes all crimes or calls for police service
without disaggregating by offense type (Catlett et al.,
2019, Yi et al.,, 2018), other studies have examined
different types of crime separately (Alghamdi and Al-
Dala’in, 2024). There are several reasons why at least
crimes against persons and property should be considered
separately. First, research has shown that different types of
crime often follow different seasonal and long-term trends
(Andresen and Malleson, 2013, Baumer et al., 2018, Prieto
Curiel, 2023). For example, Andresen and Malleson
(2013) showed how assaults peaked in the summer
months, while thefts appeared to be most prevalent later in
the year. When examining long-term trends, the data
shows that trends for homicide and burglary, the most
serious violent and property offenses, respectively, are
“similar but not identical” (Baumer et al., 2018: 41).
Second, the public is disproportionately worried about
crimes against persons, such as homicide, assaults, and
sexual offenses (Lee et al., 2020). This has been attributed,
at least in part, to the psychological and physical harms
associated with violent crime (Langton and Truman,
2015). Because crimes against persons are much less
prevalent than crimes against property, when we consider
both crime types together, any patterns in the former—the
crimes demanding the most urgent response—get
obscured.

Lastly, responses to crimes against persons and crimes
against property can be very different from each other,
which also warrants their independent examination. Law
enforcement strategies, resource allocation, community
interventions, and even policy frameworks are often
tailored according to offense type (National Institute of
Justice, 2025). For example, preventing assaults may focus
on situational interventions in nightlife districts or
domestic  violence prevention, whereas burglary
prevention might prioritize environmental design and
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neighborhood surveillance programs. Failing to
distinguish between them in predictive modelling could
lead to generalized strategies that are ill-suited to address
the specific drivers and consequences of each crime type.

3. Research Design

3.1 Data

The dataset used in this study was provided by the Austin
Police Department (APD). It contains detailed records of
reported crime incidents within the city of Austin, covering
a multi-year period from January 2022 to December 2023.
Each record includes spatial, temporal, and categorical
attributes associated with individual crime events. Key
attributes in the dataset include anonymized incident
identifiers (‘IncidentID’), and crime types such as
‘Homicide’, ‘Assault’, ‘Robbery’, ‘Burglary’, and others.
For the purpose of analysis, we grouped the incidents into
crimes against persons (e.g., assault, rape) and crimes
against property (e.g., burglary, vandalism) based on the
guidelines from the Federal Bureau of Investigation
(2019).

The dataset also includes spatial information through
coordinate fields (‘X’, °Y’), which represent the
geolocation of incidents based on address-level data.
Temporal characteristics are thoroughly documented, with
fields such as ‘DateTime From’ and ‘DateTime To’
indicating the time window during which the incident
occurred. For the time series analysis, we derived the
middle point of the recorded incident duration to use as the
time point of the incident.

Field Name Value
IncidentID AL1234XXXXX
X 30XXXXX.5

Y 100XxXXX.2
Category Assault
DateTime_From | 6/18/2022 0:30
DateTime_To 6/18/2022 6:30

Table 1. Example data records (only fields related to this
research are included)

The density plot in Figure 1 shows that both crimes against
persons and crimes against property in Austin are highly
concentrated in the central and near-east tracts of the city,
with densities gradually decreasing toward the outer
suburbs. However, crimes against property exhibit a
broader spatial spread and higher overall density levels
compared to crimes against persons, which appear more
clustered in specific hotspots.
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Figure 1. Density plots for crime incidents in Austin: (a) Crime
against persons; (b) Crime against property.

3.2 Methodology
3.2.1 STARIMA

The STARIMA model extends the classical ARIMA
framework by incorporating spatial dependencies through
spatial lag operators (Kamarianakis, 2006), which makes
STARIMA particularly suitable for modeling incidents
that are autocorrelated in both space and time, such as
urban crime patterns.

The STARIMA model is denoted as STARIMA (p7, d, ¢9),
where p represents the autoregressive (AR) component,
with p indicating the number of temporal lags, r
representing the number of spatial lags in the AR term, and
q* term corresponds to the moving average (MA)
component, where g is the number of temporal lags and s
denotes the number of spatial lags in the MA term. The
parameter d refers to the order of differencing required to
achieve stationarity. For example, STARIMA (1%, 1, 1?)
has an AR term with 1 temporal lag and 1 spatial lag, a
first-order differencing to ensure stationarity, and an MA
term with 1 temporal lag and 2 spatial lags. In this research,
we construct the STARIMA models following the steps
below:
- Stationarity Check and Differencing:
We first tested the stationarity of the weekly crime
incident data using the standard Augmented Dickey-
Fuller (ADF) test. For non-stationary series,
differencing is applied to achieve stationarity:
Yo=Y =Y )
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where Y;, represents the differenced value at time t, Y;
is the original value at time t, and Y;_,is the value at
the previous time point. This process removes trends
and helps identify the d parameter in STARIMA.

- Parameter Selection:

After achieving stationarity, STARIMA models can
be modelled by the STARMA (space-time
autoregressive moving average) package in R. In our
analysis, we chose the census tracts as the spatial unit.
The spatial structure in STARIMA was encoded using
a contiguity-based spatial weight matrix W, where
neighboring geographic units (e.g., grid cells or
administrative boundaries) were assigned non-zero
weights. This ensures that spatial lags accurately
reflect local spatial interactions.

A grid search procedure was conducted to identify
optimal values for all parameters, which help balance
temporal and spatial lags. Candidate models were
evaluated based on the Bayesian Information
Criterion (BIC) and the highest Log-Likelihood to
avoid overfitting.

This methodological framework can effectively link
spatial patterns with temporal trends to better capture the
inherent complexities in urban crime data and improve
prediction accuracy.

3.2.2 GRF

GREF is a spatial extension of the traditional random forest
algorithm capable of modeling the spatial heterogeneity in
geographic data. It combines the predictive power of
ensemble machine learning algorithms with the spatial
awareness of traditional spatial statistical methods (e.g.,
geographically weighted regression or GWR) (Georganos
etal., 2021).
GRF incorporates geographic distance into the model
process, where observations closer to a given location have
a higher impact on predictions than distant observations.
This allows the model to capture spatially varying
relationships in the data, which makes it particularly useful
for predicting the spatiotemporal patterns of crime
incidents. GRF creates both global and local models
(Georganos et al., 2021). The global model captures
general relationships across the entire study area. The local
model accounts for spatial variations specific to individual
locations. The combined model integrates both global and
local components using a weighting parameter.
In this research, the GRF implementation uses the PyGRF
python package (Sun et al., 2024), as described below:
- Spatial Weighting:
For each census tract, nearby observations
receive higher weights based on a bisquare kernel
function and optimal bandwidth parameter
determined using the incremental spatial
autocorrelation (ISA) method. The ISA method
ensures the fitted models are not too localized or
too generalized by identifying the distance at
which spatial autocorrelation peaks.

- Model Training and Prediction:
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We then train the random forest models for each
census tract using weighted observations. The
prediction process combines global and local
components: the former uses a standard random
forest trained on all observations, whereas the
latter trains spatially weighted models based on
the distance from a given location.

The prediction is computed using Equation (2).

Yyp=A—-w)*xg+w=l 2
where y, is the predicted value, w is the local
weight assigned to the local prediction (a value
between 0 and 1), g is the global prediction from
the global model, and [ is the local prediction
from the local model.

3.2.3  Model Performance Comparison

To compare the predictive performance of STARIMA and
GRF models, we applied both models separately to the two
aforementioned crime categories: crimes against persons
and crimes against property. For each model, we first
trained and validated on the same temporal range (January
2022-April 2023) and used a consistent testing period
(May 2023-December 2023). We then evaluated model
performance using R?> and Root Mean Square Error
(RMSE). This allowed us to assess not only how
STARIMA and GRF perform within each crime type but
also to compare their overall effectiveness across crime
categories.

Figure 2 shows a methodological flow chart of our
analysis, including the processing, model construction,
and evaluation steps.

Crime Data

Crime Classification
Crimes against persons
Crimes against property

Data Pre-Processing
Join crime incidents to census tracts
Aggregate weekly crime counts by census tracts

Stationary Check Time Lag Selection

First-order differencing applied Crimes against persons: 20 weels
¢ Crimes against property: 30 weeks

Spatial Weight Matrix Selection
Rook Contiguity selected as optimal

Bandwidth & Local Weight Optimization
* ISAmethod

' !

STARIMA Model Fitting
AR(1,1) and MA(1,2)

Globkal + Local RF Models
Weighted combination

\ @ |

| Model Performance Comparison ‘

Figure 2. Methodological flow chart.
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4, Results and Discussion

4.1 STARIMA Results

The STARIMA model was applied separately to the
weekly time series of crimes against persons and crimes
against property to evaluate spatiotemporal dynamics and
predictive performance. After confirming non-stationarity
in both time series, first-order differencing was applied to
meet the stationarity assumption required for STARIMA
modeling. The model STARIMA(1%,1,12) was selected as
the best-fitting structure for both crime categories based on
the BIC and Log-Likelihood values. It includes one
temporal and one spatial lag in the AR component, and one
temporal and two spatial lags in the MA component. This
configuration effectively captures short-term temporal
autocorrelations as well as spatial spillover effects across
neighboring census tracts.

The evaluation of the models showed that STARIMA
performed better in modeling crimes against persons than
crimes against property. STARIMA achieved a lower BIC
(54,732.29) and a higher Log-Likelihood (-27,341.76) for
crimes against persons, compared to a BIC of 74,687.64
and Log-Likelihood of -37,319.44 for crimes against
property. In addition, for crimes against persons, the model
reached a test Rz of 0.38 and RMSE of 1.13, while for
crimes against property, the respective values were 0.30
and 2.21. The results suggested that crimes against persons
may demonstrate more structured spatiotemporal patterns,
which makes them more suitable for STARIMA’s
assumptions (c.f. Figure 3).

Although the model effectively captured linear spatial-
temporal interactions, residual diagnostics also indicated
some remaining autocorrelation and non-normality in the
residuals, particularly for property crime predictions. This
suggested room for improvement by including more
parameters in the analysis, such as demographic factors.
However, STARIMA still demonstrates a promising
capability for modeling urban crime patterns, especially in
contexts where crimes are driven by shorter distances
(inter-neighborhood) spatial factors.

Weekly Average of Crime against Persons
Actual vs Predicted (STARIMA)
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Figure 3. STARIMA model comparisons: (a) Crime against
persons; (b) Crime against property.

4.2 GRF Results

The GRF framework was also tested on weekly crime
datasets to evaluate its capacity to identify spatial
variability in predictive outcomes. Distinct models were
developed for crimes against persons versus crimes against
property. The models integrated both global (broader
trends) and localized (area-specific) factors. The trained
models showed that, for crimes against persons, a 20-week
lag and a local weight of 0.127 produced the best results.
The model achieved an R? of 0.434 and an RMSE of 1.056
based on the testing subset. For crimes against property,
the optimal lag was 30 weeks, and the model performed
even better, with an R2 of 0.545 and an RMSE of 1.832
(see Figure 4). In both cases, the global component of the
model contributed more strongly to predictive accuracy
than the local component, especially for crimes against
property, suggesting that broader temporal trends and
global spatial patterns were more influential than localized
variations in this analysis.
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Figure 4. GRF model comparisons: (a) Crime against persons;
(b) Crime against property.

While the local models on their own showed modest
performance, when combined with the global component,
local models still helped improve the overall predictions.
The contribution of the local model was more noticeable
in areas with spatial clusters of high or fluctuating crime
counts. The analysis results demonstrate GRF’s strength in
incorporating long-term temporal dependencies and
spatial context.

4.3 Cross-model Comparison

To compare the effectiveness of the two modeling
approaches, we evaluated STARIMA and GRF based on
the same testing period and performance metrics. GRF
outperformed STARIMA in both crime categories,
particularly for property crimes. As mentioned in Sections
4.1 and 4.2, for crimes against persons, GRF achieved
slightly better predictive accuracy (R? = 0.434, RMSE =
1.056) compared to STARIMA (R?=0.38, RMSE =1.13).
For property crimes, GRF showed a more substantial
improvement, with an R2 of 0.545 and RMSE of 1.832,
while STARIMA’s performance shows room for
improvement (R2 = 0.30, RMSE = 2.21).

These differences in testing results are likely due to the
inherent design of each model. STARIMA uses a fixed
spatial weight matrix and is better for capturing linear
spatiotemporal interactions. However, GRF can adapt
spatial weighting dynamically and is better equipped to
model nonlinear relationships and broader temporal
trends, which may explain its better performance in both
crime categories.

5. Conclusions

This study compared the spatiotemporal dynamics of two
types of urban crimes (crimes against persons and
property) in Austin, Texas. We tested the effectiveness of
two modeling frameworks (STARIMA and GRF) when
predicting different categories of crime incidents. The
analysis showed that GRF outperformed STARIMA
across both crime categories, particularly for property
crimes, due to its capacity to integrate localized spatial
dependencies with broader regional patterns.

When adopting crime prediction methods, researchers and
practitioners must account for the distinct spatiotemporal
characteristics of crime types. For urban policymakers,
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GRF’s characteristics, combining global trends with
neighborhood-level variations, offer a valuable tool for
designing targeted policing strategies, especially where
nonlinear interactions and spatial variation play important
roles.

Future research can incorporate real-time environmental
data, socioeconomic variables, and temporal granularity to
further improve predictive accuracy. More advanced deep
learning models can also be adopted to examine their
performance for predicting different crime types.
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