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Abstract: As urban populations continue to expand, understanding the patterns of urban crimes becomes increasingly 

important for public safety and prevention strategies. This study uses spatiotemporal autoregressive integrated moving 

average (STARIMA) and geographical random forest (GRF) models to explore and compare the dynamics of two distinct 

categories of crime as classified by the Federal Bureau of Investigation: crimes against persons (e.g., assault, rape) and 

crimes against property (e.g., burglary, vandalism). While STARIMA is a well-established method for capturing linear 

spatiotemporal dependencies, GRF integrates spatial heterogeneity and nonlinear relationships through local weighting. 

Our results show that GRF consistently outperforms STARIMA across both crime types, particularly for property crimes, 

where broader temporal trends and spatially variable patterns play a stronger role. This work demonstrates the importance 

of disaggregating crime by type and selecting modeling approaches that accommodate the unique spatial and temporal 

characteristics of each. The results provide a deeper understanding of crime prediction and guidance for data-driven 

policing strategies. 
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1. Introduction

Urban crime remains a persistent concern in modern cities 

as it influences public safety, local economics, and the 

allocation of policing resources (Hess et al., 2014, LeClerc 

and Savona, 2017, van Koppen et al., 2010). As urban 

environments grow more dynamic and complex, the need 

for timely and accurate prediction of crime patterns 

becomes increasingly urgent (Neuilly et al., 2011, Wolff 

and Asche, 2009). The pattern of crime is inherently 

spatiotemporal in nature, which emerges from the 

interaction of social behaviors, environmental contexts, 

built environment, and routine human mobility patterns 

(Alexander and Xiang, 1994). Thus, understanding the 

spatial and temporal dynamics of crime is essential for 

effective intervention strategies and long-term urban 

planning (Ratcliffe, 2004, Weisburd et al., 2004). 

A wide variety of analytical approaches have been 

developed for crime prediction. Traditional statistical 

methods such as regression analysis have been widely used 

to examine the correlation between crime rates and socio-

demographic or environmental variables (Anselin et al., 

2000, Boggs, 1965). Kernel density estimation and other 

hotspot mapping techniques are commonly employed to 

visualize concentrations of criminal activity across space 

(Chainey and Ratcliffe, 2005, Rennison and Hart, 2019). 

However, these methods often neglect the temporal 

dimension or treat time as a static factor. 

To address crime’s dynamic nature, temporal prediction 

methods based on time series analysis have been adopted 

and refined for crime predictions. For example, the 

autoregressive integrated moving average (ARIMA) 

model and its seasonal variants have been applied to crime 

count data to capture recurring temporal trends and cycles 

(Anderson, 1985, Gorr and Harries, 2003, Yuan, 2017, 

Yuan and Wylie, 2024). Among the more spatially 

grounded methods, the spatiotemporal autoregressive 

integrated moving average (STARIMA) model provides a 

structured framework for incorporating both spatial 

autocorrelation and temporal dependency (Kamarianakis, 

2006, Liu and Lu, 2019). STARIMA has been effectively 

used in fields such as traffic forecasting (Min et al., 2009), 

climate monitoring (Munandar et al., 2023), and crime 

analysis (Liu and Lu, 2019).  

More recently, machine learning models such as decision 

trees, random forests, support vector machines, and deep 

learning architectures have gained popularity for their 

ability to handle large-scale and high-dimensional datasets 

(Shah et al., 2021, Wang et al., 2013). These approaches 

offer high predictive performance but are sometimes 

criticized for their limited interpretability and lack of 

integration with spatial theory or geographic context 

(Perry et al., 2013). A machine learning approach to 

addressing these challenges is the geographical random 

forest (GRF) model, which combines regular random 

forests with spatially varying coefficients (Georganos et 

al., 2021). The spatially-aware nature of the approach 

allows the model to capture how crime patterns vary 

depending on local factors, such as socioeconomic status, 

infrastructure, and population density; therefore, it has 

been proven effective in several studies (Sun et al., 2024, 

Wu et al., 2024).   

However, although spatially aware models like STARIMA 

and GRF are effective in predicting space-time series, most 

crime-related applications of these models focus on overall 

crime counts or aggregate categories without 

differentiating between crime types. This lack of 

differentiation poses a significant limitation. Crimes 
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against persons, such as assault or sexual violence, are 

often influenced by social interaction patterns and may 

display different spatial diffusion behaviors compared to 

crimes against property, such as burglary or vandalism, 

which may be more opportunistic and location-specific 

(Cohen and Felson, 1979, Groff and La Vigne, 2002). 

Aggregating these distinct types of crime into a single 

modeling framework may overlook important details and 

reduce predictive performance. 

Motivated by this gap, the present study applies the 

STARIMA and GRF models to separately analyze and 

compare the spatiotemporal patterns of crimes against 

persons and crimes against property in Austin, Texas. 

Drawing on two years of detailed incident-level crime data 

from 2022 to 2023, we aim to evaluate how well these two 

predictive models perform for each crime category and 

whether distinct spatial or temporal structures emerge. Our 

study seeks to provide better insights into the dynamics of 

urban crime and inform more effective prevention 

strategies. 

2. Background 

Although much research modeling spatiotemporal crime 

patterns includes all crimes or calls for police service 

without disaggregating by offense type (Catlett et al., 

2019, Yi et al., 2018), other studies have examined 

different types of crime separately (Alghamdi and Al-

Dala’in, 2024). There are several reasons why at least 

crimes against persons and property should be considered 

separately. First, research has shown that different types of 

crime often follow different seasonal and long-term trends 

(Andresen and Malleson, 2013, Baumer et al., 2018, Prieto 

Curiel, 2023). For example, Andresen and Malleson 

(2013) showed how assaults peaked in the summer 

months, while thefts appeared to be most prevalent later in 

the year. When examining long-term trends, the data 

shows that trends for homicide and burglary, the most 

serious violent and property offenses, respectively, are 

“similar but not identical” (Baumer et al., 2018: 41). 

Second, the public is disproportionately worried about 

crimes against persons, such as homicide, assaults, and 

sexual offenses (Lee et al., 2020). This has been attributed, 

at least in part, to the psychological and physical harms 

associated with violent crime (Langton and Truman, 

2015). Because crimes against persons are much less 

prevalent than crimes against property, when we consider 

both crime types together, any patterns in the former—the 

crimes demanding the most urgent response—get 

obscured. 

Lastly, responses to crimes against persons and crimes 

against property can be very different from each other, 

which also warrants their independent examination. Law 

enforcement strategies, resource allocation, community 

interventions, and even policy frameworks are often 

tailored according to offense type (National Institute of 

Justice, 2025). For example, preventing assaults may focus 

on situational interventions in nightlife districts or 

domestic violence prevention, whereas burglary 

prevention might prioritize environmental design and 

neighborhood surveillance programs. Failing to 

distinguish between them in predictive modelling could 

lead to generalized strategies that are ill-suited to address 

the specific drivers and consequences of each crime type. 

3. Research Design 

3.1 Data 

The dataset used in this study was provided by the Austin 

Police Department (APD). It contains detailed records of 

reported crime incidents within the city of Austin, covering 

a multi-year period from January 2022 to December 2023. 

Each record includes spatial, temporal, and categorical 

attributes associated with individual crime events. Key 

attributes in the dataset include anonymized incident 

identifiers (‘IncidentID’), and crime types such as 

‘Homicide’, ‘Assault’, ‘Robbery’, ‘Burglary’, and others. 

For the purpose of analysis, we grouped the incidents into 

crimes against persons (e.g., assault, rape) and crimes 

against property (e.g., burglary, vandalism) based on the 

guidelines from the Federal Bureau of Investigation 

(2019).  

The dataset also includes spatial information through 

coordinate fields (‘X’, ‘Y’), which represent the 

geolocation of incidents based on address-level data.  

Temporal characteristics are thoroughly documented, with 

fields such as ‘DateTime_From’ and ‘DateTime_To’ 

indicating the time window during which the incident 

occurred. For the time series analysis, we derived the 

middle point of the recorded incident duration to use as the 

time point of the incident. 

Field Name Value 

IncidentID A1234xxxxx 

X 30xxxxx.5 

Y 100xxxxx.2 

Category Assault 

DateTime_From 6/18/2022 0:30  

DateTime_To 6/18/2022 6:30 

Table 1. Example data records (only fields related to this 

research are included) 

The density plot in Figure 1 shows that both crimes against 

persons and crimes against property in Austin are highly 

concentrated in the central and near-east tracts of the city, 

with densities gradually decreasing toward the outer 

suburbs. However, crimes against property exhibit a 

broader spatial spread and higher overall density levels 

compared to crimes against persons, which appear more 

clustered in specific hotspots. 
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Figure 1. Density plots for crime incidents in Austin: (a) Crime 

against persons; (b) Crime against property. 

3.2 Methodology 

3.2.1 STARIMA 

The STARIMA model extends the classical ARIMA 

framework by incorporating spatial dependencies through 

spatial lag operators (Kamarianakis, 2006), which makes 

STARIMA particularly suitable for modeling incidents 

that are autocorrelated in both space and time, such as 

urban crime patterns. 

The STARIMA model is denoted as STARIMA (pʳ, d, qˢ), 

where pʳ represents the autoregressive (AR) component, 

with p indicating the number of temporal lags, r 

representing the number of spatial lags in the AR term, and 

qˢ term corresponds to the moving average (MA) 

component, where q is the number of temporal lags and s 

denotes the number of spatial lags in the MA term. The 

parameter d refers to the order of differencing required to 

achieve stationarity.  For example, STARIMA (1¹, 1, 1²) 

has an AR term with 1 temporal lag and 1 spatial lag, a 

first-order differencing to ensure stationarity, and an MA 

term with 1 temporal lag and 2 spatial lags. In this research, 

we construct the STARIMA models following the steps 

below: 

- Stationarity Check and Differencing: 

We first tested the stationarity of the weekly crime 

incident data using the standard Augmented Dickey-

Fuller (ADF) test. For non-stationary series, 

differencing is applied to achieve stationarity: 

𝑌𝑡′ = 𝑌𝑡 − 𝑌𝑡−1                        (1) 

where 𝑌𝑡′ represents the differenced value at time t,  𝑌𝑡 

is the original value at time t, and 𝑌𝑡−1is the value at 

the previous time point. This process removes trends 

and helps identify the d parameter in STARIMA. 

- Parameter Selection: 

After achieving stationarity, STARIMA models can 

be modelled by the STARMA (space-time 

autoregressive moving average) package in R. In our 

analysis, we chose the census tracts as the spatial unit. 

The spatial structure in STARIMA was encoded using 

a contiguity-based spatial weight matrix W, where 

neighboring geographic units (e.g., grid cells or 

administrative boundaries) were assigned non-zero 

weights. This ensures that spatial lags accurately 

reflect local spatial interactions.  

A grid search procedure was conducted to identify 

optimal values for all parameters, which help balance 

temporal and spatial lags. Candidate models were 

evaluated based on the Bayesian Information 

Criterion (BIC) and the highest Log-Likelihood to 

avoid overfitting. 

This methodological framework can effectively link 

spatial patterns with temporal trends to better capture the 

inherent complexities in urban crime data and improve 

prediction accuracy. 

3.2.2 GRF 

GRF is a spatial extension of the traditional random forest 

algorithm capable of modeling the spatial heterogeneity in 

geographic data. It combines the predictive power of 

ensemble machine learning algorithms with the spatial 

awareness of traditional spatial statistical methods (e.g., 

geographically weighted regression or GWR) (Georganos 

et al., 2021). 

GRF incorporates geographic distance into the model 

process, where observations closer to a given location have 

a higher impact on predictions than distant observations. 

This allows the model to capture spatially varying 

relationships in the data, which makes it particularly useful 

for predicting the spatiotemporal patterns of crime 

incidents. GRF creates both global and local models 

(Georganos et al., 2021). The global model captures 

general relationships across the entire study area. The local 

model accounts for spatial variations specific to individual 

locations. The combined model integrates both global and 

local components using a weighting parameter. 

In this research, the GRF implementation uses the PyGRF 

python package (Sun et al., 2024), as described below: 

- Spatial Weighting:  

For each census tract, nearby observations 

receive higher weights based on a bisquare kernel 

function and optimal bandwidth parameter 

determined using the incremental spatial 

autocorrelation (ISA) method. The ISA method 

ensures the fitted models are not too localized or 

too generalized by identifying the distance at 

which spatial autocorrelation peaks. 

- Model Training and Prediction:  
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We then train the random forest models for each 

census tract using weighted observations. The 

prediction process combines global and local 

components: the former uses a standard random 

forest trained on all observations, whereas the 

latter trains spatially weighted models based on 

the distance from a given location.  

The prediction is computed using Equation (2).  

𝑦𝑝  =  (1 −  𝑤)  ∗  𝑔 +  𝑤 ∗  𝑙        (2)                      

where 𝑦𝑝  is the predicted value, 𝑤 is the local 

weight assigned to the local prediction (a value 

between 0 and 1), 𝑔 is the global prediction from 

the global model, and 𝑙 is the local prediction 

from the local model. 

3.2.3 Model Performance Comparison 

To compare the predictive performance of STARIMA and 

GRF models, we applied both models separately to the two 

aforementioned crime categories: crimes against persons 

and crimes against property. For each model, we first 

trained and validated on the same temporal range (January 

2022–April 2023) and used a consistent testing period 

(May 2023–December 2023). We then evaluated model 

performance using R2 and Root Mean Square Error 

(RMSE). This allowed us to assess not only how 

STARIMA and GRF perform within each crime type but 

also to compare their overall effectiveness across crime 

categories. 

Figure 2 shows a methodological flow chart of our 

analysis, including the processing, model construction, 

and evaluation steps. 

 
Figure 2. Methodological flow chart. 

4. Results and Discussion 

4.1 STARIMA Results 

The STARIMA model was applied separately to the 

weekly time series of crimes against persons and crimes 

against property to evaluate spatiotemporal dynamics and 

predictive performance. After confirming non-stationarity 

in both time series, first-order differencing was applied to 

meet the stationarity assumption required for STARIMA 

modeling. The model STARIMA(1¹,1,1²) was selected as 

the best-fitting structure for both crime categories based on 

the BIC and Log-Likelihood values. It includes one 

temporal and one spatial lag in the AR component, and one 

temporal and two spatial lags in the MA component. This 

configuration effectively captures short-term temporal 

autocorrelations as well as spatial spillover effects across 

neighboring census tracts. 

The evaluation of the models showed that STARIMA 

performed better in modeling crimes against persons than 

crimes against property. STARIMA achieved a lower BIC 

(54,732.29) and a higher Log-Likelihood (-27,341.76) for 

crimes against persons, compared to a BIC of 74,687.64 

and Log-Likelihood of -37,319.44 for crimes against 

property. In addition, for crimes against persons, the model 

reached a test R² of 0.38 and RMSE of 1.13, while for 

crimes against property, the respective values were 0.30 

and 2.21. The results suggested that crimes against persons 

may demonstrate more structured spatiotemporal patterns, 

which makes them more suitable for STARIMA’s 

assumptions (c.f. Figure 3).  

Although the model effectively captured linear spatial-

temporal interactions, residual diagnostics also indicated 

some remaining autocorrelation and non-normality in the 

residuals, particularly for property crime predictions. This 

suggested room for improvement by including more 

parameters in the analysis, such as demographic factors. 

However, STARIMA still demonstrates a promising 

capability for modeling urban crime patterns, especially in 

contexts where crimes are driven by shorter distances 

(inter-neighborhood) spatial factors. 

 

(a) 
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Figure 3. STARIMA model comparisons: (a) Crime against 

persons; (b) Crime against property. 

4.2 GRF Results 

The GRF framework was also tested on weekly crime 

datasets to evaluate its capacity to identify spatial 

variability in predictive outcomes. Distinct models were 

developed for crimes against persons versus crimes against 

property. The models integrated both global (broader 

trends) and localized (area-specific) factors. The trained 

models showed that, for crimes against persons, a 20-week 

lag and a local weight of 0.127 produced the best results. 

The model achieved an R² of 0.434 and an RMSE of 1.056 

based on the testing subset. For crimes against property, 

the optimal lag was 30 weeks, and the model performed 

even better, with an R² of 0.545 and an RMSE of 1.832 

(see Figure 4). In both cases, the global component of the 

model contributed more strongly to predictive accuracy 

than the local component, especially for crimes against 

property, suggesting that broader temporal trends and 

global spatial patterns were more influential than localized 

variations in this analysis. 

 
(a) 

 
(b) 

Figure 4. GRF model comparisons: (a) Crime against persons; 

(b) Crime against property. 

While the local models on their own showed modest 

performance, when combined with the global component, 

local models still helped improve the overall predictions. 

The contribution of the local model was more noticeable 

in areas with spatial clusters of high or fluctuating crime 

counts. The analysis results demonstrate GRF’s strength in 

incorporating long-term temporal dependencies and 

spatial context.  

4.3 Cross-model Comparison 

To compare the effectiveness of the two modeling 

approaches, we evaluated STARIMA and GRF based on 

the same testing period and performance metrics. GRF 

outperformed STARIMA in both crime categories, 

particularly for property crimes. As mentioned in Sections 

4.1 and 4.2, for crimes against persons, GRF achieved 

slightly better predictive accuracy (R² = 0.434, RMSE = 

1.056) compared to STARIMA (R² = 0.38, RMSE = 1.13). 

For property crimes, GRF showed a more substantial 

improvement, with an R² of 0.545 and RMSE of 1.832, 

while STARIMA’s performance shows room for 

improvement (R² = 0.30, RMSE = 2.21). 

These differences in testing results are likely due to the 

inherent design of each model. STARIMA uses a fixed 

spatial weight matrix and is better for capturing linear 

spatiotemporal interactions. However, GRF can adapt 

spatial weighting dynamically and is better equipped to 

model nonlinear relationships and broader temporal 

trends, which may explain its better performance in both 

crime categories. 

5. Conclusions 

This study compared the spatiotemporal dynamics of two 

types of urban crimes (crimes against persons and 

property) in Austin, Texas. We tested the effectiveness of 

two modeling frameworks (STARIMA and GRF) when 

predicting different categories of crime incidents. The 

analysis showed that GRF outperformed STARIMA 

across both crime categories, particularly for property 

crimes, due to its capacity to integrate localized spatial 

dependencies with broader regional patterns.  

When adopting crime prediction methods, researchers and 

practitioners must account for the distinct spatiotemporal 

characteristics of crime types. For urban policymakers, 
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GRF’s characteristics, combining global trends with 

neighborhood-level variations, offer a valuable tool for 

designing targeted policing strategies, especially where 

nonlinear interactions and spatial variation play important 

roles.  

Future research can incorporate real-time environmental 

data, socioeconomic variables, and temporal granularity to 

further improve predictive accuracy. More advanced deep 

learning models can also be adopted to examine their 

performance for predicting different crime types. 
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