

Auto-generalized labels on multi-layer Leaflet maps

Mátyás Gede a,
*

a Institute of Cartography and Geoinformatics, ELTE Eötvös Loránd University, Budapest, Hungary - saman@inf.elte.hu

* Corresponding author

Abstract: Leaflet is one of the most popular client-side web mapping libraries. It is lightweight, easy-to-use, especially

for ones without strong programming background. The library, however, lacks a very important feature: map labels.

The author developed a plugin for Leaflet that makes it easy to show map labels for any vector layer. Labels are

automatically generalized to avoid overlapping texts. Point symbols or markers can be linked to their labels i.e. if the

label cannot be displayed, its marker is also removed. Labels are drawn in priority order. Priorities, as well as label texts

and styles can be highly customized with respect to feature/layer properties.

Labels are displayed as HTML elements, allowing developers to create complex labels with various borders or

backgrounds as well, by CSS styling rules.

The plugin extends the Map class, while label properties can be set for each layer separately. Collision conflicts are

checked between layers as well. Dynamic addition/removal of map objects is also supported. Performance of the plugin

was tested with 3700 map objects (mixed data of points, polygons, and lines). Updating map labels after zoom/pan

required only fragments of seconds.

The source code, user guide and examples are available at https://github.com/samanbey/leaflet-mapwithlabels

Keywords: automatic labels; Leaflet; web cartography; open source

1. Introduction

Labels are essential part of maps. As this area was well

researched in the past decades, most desktop GIS software

has sophisticated solutions for map labelling (Brewer and

Frye, 2005). Server-side web mapping software such as

MapServer (OSGeo 2022) or GeoServer (GeoServer 2022)

also provide dynamic labelling tools. These can even be

controlled from client side using Styled Layer Descriptors

(SLD) in the map requests (Lupp 2007).

Compared to desktop and server-side environment, labels

are treated as stepchildren in client-side web mapping.

Most JavaScript libraries, especially open-source ones

provide no or limited support for automatic labelling of

features (Brinkhoff 2017). This leads to poorly designed

web maps flooding the Internet – people want to share

information using maps but don’t want to spend too much

time with that, so they just use the built-in features of

libraries, even if those are cartographically inappropriate.

In traditional cartography there are strict rules of

positioning names on maps. According to Imhof (1975)

the general principles are:

• legibility: the names should be easily read,

discriminated, located,

• clear graphic association: the name and the object

to which belongs should be easily recognised,

• names should disturb other map content as little

as possible,

• names should assist directly spatial situation,

connections, etc.,

• type arrangement should reflect the classification

and hierarchy of objects,

• names should not be evenly dispersed over the

map, nor should names be densely clustered.

Considering all these principles meant tremendous manual

work on name placing. With the emerge of automatically

created maps these concepts first took a back seat. Later,

most of them were incorporated into various GIS systems,

but as the algorithms in the background of a decent label

placing system are rather complex (Doddi et al, 1997), they

didn’t really appear in client-side web mapping.

Naturally, not all the traditional principles can, or should

be implemented in the case of dynamic, zoomable web

maps. The possibility free zooming and panning of the

map allows more slack labelling as increasing the zoom

gives more space to display more names. At the same time,

it raises new challenges: labels on lower zoom levels

should be selected using the rules of cartographic

generalization.

This paper introduces a possible solution created for the

popular open-source web mapping framework Leaflet,

addressing at least a subset of Imhof’s name placing

principles.

Proceedings of the International Cartographic Association, 7, 2, 2025 | https://doi.org/10.5194/ica-proc-7-2-2025
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada.
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.

2 of 5

1.1 Previous Works

Naturally, there are other research projects on this topic.

Brinkhoff (2017) – besides giving a thorough overview on

the subject and also suggesting extensions on standards

such as Symbology Encoding (Müller 2006), – introduces

a prototype solution to be used with Google Maps

JavaScript API. His solution is reported to work fast even

with several thousand points but only deals with point

objects.

Kenta Hakoishi’s Leaflet.LabelTextCollision is a plugin

implementing a Canvas renderer extension that displays

labels and detects collisions (Hakoishi 2016).

Unfortunately this plugin has not been updated for seven

years now, and lacks formatting options such as label

alignment, font settings and other styling possibilities; and

there is no possibility to handle icons and labels together.

A further extension from 3Maps, Leaflet.streetlabels

(Santos & Dias 2022) combines Hakoishi’s work with

Canvas-TextPath (Viglino 2016) to support labels along

polylines. This plugin also allows a limited text style

customization: the font size and colour, and the text halo

properties can be set.

Other solutions simply use Leaflet’s tooltip object or

markers with a custom defined HTML element instead an

icon which can be a workaround for some cases but does

not solve most problems, especially text collision.

The solution presented in this paper is based on a previous

work of the author, the leaflet-labeler plugin (Gede, 2023).

That plugin implemented labelling on a subclass of

Leaflet’s GeoJSON layer. While it is perfectly useable for

maps with only one layer with labels, label collisions

between layers are not checked.

2. Labelling Features of Popular Open-source

Client-side Web Mapping Libraries

Farkas (2017) thoroughly examined the various web

mapping libraries. Based on his work, the most usable

client-side libraries are OpenLayers and Leaflet. There are

numerous other libraries as well but they are either not

totally open (e.g. the new version of MapBox GL JS

requires an access token even for instantiating the Map

object) (Mapbox 2022) or are less known or have very

limited cartographic capabilities.

2.1 OpenLayers

According to Farkas (2017), OpenLayers is the most

comprehensive client-side web mapping library available.

Vector features can be labelled as a part of their styling.

Label formatting options are rich and (just like any other

styling) may depend on feature attributes, which makes it

possible to differentiate various feature classes by their

label style (OpenLayers 2022). Label text can be rotated or

fitted to lines as well. By default, line and polygon labels

are only drawn on a specific zoom level if they fit into the

corresponding feature. This setting also prevent label

placing conflicts. Using the `declutter` option on a vector

layer, there is also conflict solving for point features and

their labels, which, together with setting `renderOrder` (a

function that takes two features as arguments and the sign

of the return value is used to determine the drawing order

of features) offers a great solution for prioritized labelling.

There is one issue here: the current view box of the map is

not considered when rendering labels, so some names may

partially fall outside the view (Figure 1).

Figure 1. Decluttered labelling in OpenLayers.

A big disadvantage of OpenLayers is its harder learning

curve. Although its features are much richer than the other

popular library, Leaflet, non-expert users (especially ones

with limited previous programming skills) prefer this latter

one because it is much easier to get started with.

2.2 Leaflet

Despite its limitations when compared to OpenLayers,

Leaflet is also very popular among web developers. Its

biggest advantage is simplicity: the most often needed

functions of an interactive web map can be implemented

with a few simple lines of code.

Leaflet has no built-in labelling solution. There are,

however, various plugins and workarounds to display

names on the map. One possible way is to create markers

without an icon, but with a custom HTML content, using

the DivIcon class (Figure 2). The disadvantage of this

solution is that it creates a label that is an independent map

feature, not connecting to the map symbol the name

belongs to.

Figure 2. Labelled polygons using L.DivIcon.

Another solution is the use of Leaflet’s tooltips with the

`permanent` option set to true. Tooltips were originally

designed to appear only when user hovers the mouse

pointer over a feature, but with this workaround they will

be always visible (Figure 3). On the other hand, one needs

Proceedings of the International Cartographic Association, 7, 2, 2025 | https://doi.org/10.5194/ica-proc-7-2-2025
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada.
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.

3 of 5

a lot of extra CSS rules to get rid of the default “bubble”

encapsulating the tooltip text.

None of the workarounds above can do anything with label

collision conflicts, nor any other of Imhof’s principles.

Figure 3: Labels implemented as permanent tooltips.

2.3 Dynamic labelling features web mapping libraries

should provide

In order to help creating easily usable, informative maps,

a web mapping library should offer the followings:

• The possibility of adding dynamic labels to

features. Label text as well as its styling might

depend on feature attributes.

• These labels should not overlap with each other

or with any point symbols. Web maps are

dynamically zoomable, therefore no need to

display all names all time, only as many that can

be fitted into the current view.

• Some point feature classes – especially

settlements – and their labels generally only

appear together, i.e. if a label is not displayed

because it cannot fit without overlaps, the

corresponding point symbol should also be

removed.

• If not all labels are displayed all time, there

should be a possibility to set a priority order.

3. The leaflet-mapwithlabels Extension

The author developed an extension to Leaflet called

leaflet-mapwithlabels, which implements a subclass of

L.Map, the map interface class of Leaflet. Using the new

class, the features of any layer that has its `label` option set

will be labelled. Labels are dynamically positioned and

generalized to avoid overlaps. In the case of point symbols,

markers, it is possible to bind the symbol to the label which

means that the symbol will only be displayed if its label

also fits to the map.

Labelling is highly customizable. Label text, style and

priority can be set either as literals or as functions of the

corresponding layer object. For linear features, labels can

be repeated in specified distances along the line.

3.1 Under the Hood

Label placing mechanism is inherited from the author’s

previous project (Gede 2023), but there are some key

changes in order to provide cross-layer label collision

detection. Labels are stored in a list. When a new layer

with label is added or removed, this list is updated. The

information stored for each label is label text, reference

point coordinates, geometry type, priority and in the case

of point geometry, the size and the anchor point of the

symbol. When updating labels, this list is iterated over, in

the order defined by priority. A label is displayed only if it

has no conflict with already displayed (i.e. higher priority)

labels. In the case of point objects, not only text collision

checked but symbol collision as well. Conflicts are tested

by checking the intersection of the text/symbol bounding

boxes. For linear features it is possible to repeat labels

along the line in specified pixel distances. In this case each

instance of the repeated labels is tested for collision.

Labels are HTML objects, having a specific class

name (leaflet-label), therefore it is easy to apply various

styles on them. As CSS currently does not support “halo”

effect for texts, (but an outline is usually important for

labels on web maps) it is implemented by the `text-

shadow` CSS property in the default style.

3.2 Using the extension

The main goal was to provide a simple solution for the

most typical needs. Therefore, after including the

JavaScript and the CSS file of leaflet-mapwithlabels in the

code, and changing `L.Map` to `L.MapWithLabels`, map

objects of any layer can be labelled by setting the

corresponding layer’s `label` option, either as a string

literal or as a function assigning text to layer objects

(similarly to the way of binding tooltip or popup texts to

feature group layers).

The style and the behaviour of labels can be customized on

layer level by a handful of additional options: the gap

between the symbol and the label, priority, label position,

as well as the style of the label object.

3.3 Examples

Figure 4 shows a point feature layer before and after

zooming in. It also demonstrates the use of a labelling and

a styling function (labels are composed of settlement

names and their population; major cities are written in

upper case and bold letters).

Figure 5 shows lines with labels (a road network with road

numbers). Displaying curved labels along lines (e.g. for

street names) is not supported yet. It is possible, however,

to put a “box” around labels, using simple CSS rules.

Taking advantage of the possibility of text styling

functions, motorways are differentiated on the map by blue

background.

Proceedings of the International Cartographic Association, 7, 2, 2025 | https://doi.org/10.5194/ica-proc-7-2-2025
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada.
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.

4 of 5

Figure 4. Points with labels – the same map with different zoom
settings.

Figure 5. Lines with labels.

Figure 6. Several layers with labels on the same map.

Figure 6 shows a map with several layers to demonstrate

cross-layer label collision check.

3.4 Performance

Rendering speed was tested on a notebook with Core i7

CPU. The test dataset contains settlements of Hungary as

points, supplemented by hydrography, administrative

areas and major road network (around 3200 point, 400

polyline, 25 polygon objects). Loading or updating the

map after viewbox change takes typically 0.4–0.7 seconds,

regardless the browser used (tested on Google Chrome,

Mozilla Firefox and Microsoft Edge). With only 500

objects, rendering is under 0.1 seconds. These delays mean

that visualisation of large datasets is still enjoyable.

3.5 Known issues

L.GeoJSON layer does not pass over options to its custom

Marker layers, therefore if custom markers are used for

GeoJSON points, label-specific options have to be

included within marker factory function options. Example

code is included on the project’s GitHub page.

4. Conclusions, future plans

Recognizing the need of an easy-to-use solution for

automatic labelling in client-side web maps, the author

developed a tool that extends Leaflet to display labels for

point, polygon, or line objects. Labels are highly

customizable; their text and style can be set based on layer

or feature properties.

Future plans include the possibility of fitting labels on

curves (for example street or river names or labelled

contour lines), and an option to force polygon labels inside

the corresponding polygons.

5. References

Agafonkin, V. (2022). Leaflet API reference.

https://leafletjs.com/reference.html

Brewer, C.A., & Frye, C. (2005). Comparison of GIS and

Graphics Software for Advanced Cartographic

Symbolization and Labeling: Five GIS Projects.

Proceedings of the 22nd ICC, A Coruña, Spain, 2005.

Brinkhoff, T. (2017). Supporting Dynamic Labeling in

Web Map Applications. https://agile-

online.org/images/conferences/2017/documents/shortpa

pers/80_ShortPaper_in_PDF.pdf

Doddi, S., Marathe, M.V., Mirzaian, A., Moret, B.M.E., &

Zhu, B. (1997). Map labeling and its generalizations.

Proceedings of the 8th SIAM Symposium on Discrete

Algorithms SODA'97, pp. 148–157.

Farkas, G. (2017). Applicability of open-source web

mapping libraries for building massive Web GIS clients.

Journal of Geographical Systems, Springer, 19(4), pp.

273–295.

Gede, M. (2022). Hatch Fill on Webmaps – to Do or Not

to Do, and How to Do, Abstr. Int. Cartogr. Assoc., 5, 48,

https://doi.org/10.5194/ica-abs-5-48-2022

Proceedings of the International Cartographic Association, 7, 2, 2025 | https://doi.org/10.5194/ica-proc-7-2-2025
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada.
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.

5 of 5

Gede, M. (2023). Automatic Labels in Leaflet. Adv.

Cartogr. GIScience Int. Cartogr. Assoc., 4, 8,

https://doi.org/10.5194/ica-adv-4-8-2023

GeoServer (2022). GeoServer documentation.

https://docs.geoserver.org/

Hakoishi, K. (2016). Leaflet.LabelTextCollision.

https://github.com/yakitoritabetai/Leaflet.LabelTextColl

ision

Imhof, E. (1975). Positioning Names on Maps, The

American Cartographer, 2:2, 128-144, DOI:

10.1559/152304075784313304

Lupp, M. (Ed.). (2007). OGC Styled Layer Descriptor

profile of the Web Map Service Implementation

Specification, Version 1.1.0 (revision 4), OGC 05-078r4.

https://portal.ogc.org/files/?artifact_id=22364

Mapbox (2022). Migrate to Mapbox GL JS v2.

https://docs.mapbox.com/mapbox-gl-js/guides/migrate-

to-v2/

Müller, M. (2006). OGC Symbology Encoding

Implementation Specification, Version 1.1.0 (revision 4).

OGC 05-077r4

OpenLayers (2022). OpenLayers Documentation.

https://openlayers.org/doc/

OSGeo (2022). MapServer 8.0.0 Documentation.

https://mapserver.org/documentation.html

Santos, J., & Dias, L. (2022). Leaflet.streetlabels.

https://github.com/3mapslab/Leaflet.streetlabels

Viglino, J-M. (2016). Canvas-TextPath.

https://github.com/Viglino/Canvas-TextPath

Proceedings of the International Cartographic Association, 7, 2, 2025 | https://doi.org/10.5194/ica-proc-7-2-2025
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada.
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.

