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Abstract: Cartographic Generalization is a fundamental process in automatic map generation that mostly relies on
rule-based constraints. Previous methods that aim at learning this generalization process from data either feed rasterized
grids into Convolutional Neural Networks (CNN) or compute hand-designed features to process vector data with Graph
Neural Networks (GNN’s). However, there is little work that investigates the application of Deep Learning models
directly on the vector coordinates. In this work we demonstrate the efficacy of CNN based architectures to highly
constrained geometrical spaces such as building footprints, eliminating the need for more complex architectures. To
remedy the lack of annotated data we propose to train geometrical feature embeddings in a self-supervised fashion to
directly approximate geometrical properties of local triangles in the building footprints, rather than manually engineering
Geometrical Features. We validate our approach on a Building Classification and cartographic generalisation task,

outperforming previous methods.

1. Introduction

Cartographic Generalisation is a fundamental process in
visualizing digital maps across multiple scales while pre-
serving essential geographic characteristics. Within this
domain, Building Simplification represents a particularly
challenging task that traditionally relies on rule-based ap-
proaches, requiring significant domain expertise and man-
ual work. On the other hand, Deep Learning methodolo-
gies offer promising avenues for automating this process,
by extracting statistical patterns entirely from the data. Thus,
they offer a much more flexible way of describing the abun-
dant variations seen in cartographic generalisation.

Convolutional Neural Networks (CNNs) have demonstrated
remarkable success in image processing, making them at-
tractive for cartographic tasks. However, rasterizing vector-
based geographical data to apply these techniques intro-
duces artifacts that compromise geometric integrity. The
alternative approach of applying Deep Learning directly to
vector data faces its own significant challenges. Firstly,
CNNs seem to work particularly well in high dimensions,
from which lower dimensional intrinsic representations can
be extracted, but struggle on already naturally lower di-
mensional data (Pope et al., 2021). Furthermore, they fun-
damentally rely on the inductive bias of regularly sampled
grids, where convolution maintains a linear shift invari-
ant system only when the underlying continuous signal is
sampled uniformly. This translation invariance, crucial to
CNNs’ success in image domains, breaks down when ap-
plied to irregularly structured vector geometries.

Recent advancements, summarized under the term "Ge-
ometric Deep Learning" (Bronstein et al., 2017), aim at
closing this gap. Out of these efforts, most notably Graph
Neural Networks (GNN) emerged that can process vec-
tor data (Wu et al., 2020). Albeit presenting an interest-
ing candidate for Building Simplification, we argue that

GNN’s introduce unnecessary complexity and are not nec-
essarily optimal for the well-structured nature of building
footprints. These polygonal representations exhibit pre-
dictable topological relationships, where each vertex con-
nects to exactly two neighbors in a fixed sequence. This
constrained structure allows us to employ simpler 1D con-
volutions with a filter size of 3, efficiently aggregating in-
formation from immediate neighboring vertices while main-
taining computational efficiency. For instance, the graph
convolutional operator (GCN) from Kipf and Welling (2016)
can be written as

H' = o(D 2AD 2 H'W'), (1)

where A € R"™" is the adjacency matrix with self-loops,
D e R™" i the degree matrix, o is a non-linearity, H I'e
R4 and H'*! € R™* are the [ —th and [ + 1-th feature
map, respectively and W/ € R"*¥ is the weight matrix of
layer I. H'W linearly transforms the feature activations
through a learnable convolutional filter of size 1. The re-
sult is aggregated across neighbouring nodes by multiply-
ing with the adjacency matrix and normalized by division
with the node degree. One should note that this normal-
ization becomes unnecessary in graphs with fixed node de-
gree. Conversely, a standard convolutional layer with filter
size 3 and circular padding can be seen to equally imple-
ment message passing on a graph, but with more flexibility,
as it allows to individually weight the contributions across
neighboring nodes and different feature channels (See Fig-
ure 1). Crucially, this only holds for graphs with a fixed
node degree of 2 and a well-defined neighborhood relation.

Existing Deep Learning based methods on building poly-
gons typically augment raw coordinate data with hand-
crafted features, such as differences to neighboring ver-
tices, rotation angles, and edge lengths, to project each
node into a local, translation invariant coordinate system.
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While effective, this approach still relies on human exper-
tise to design appropriate feature transformations.

Instead of engineering features that have certain desirable
properties, Geometric Deep Learning frameworks aim at
defining novel model architectures that can directly pro-
cess unstructured vector data and incorporate certain ge-
ometrical knowledge by design. Many methods have fo-
cused on defining a novel convolution operator that ab-
stracts from the original grid assumption towards a defini-
tion on unordered vector geometries. In this formulation, a
function with trainable parameters that directly takes vec-
tor coordinates as input replaces the weights in standard
convolutional operators. Thus, these novel convolutional
layers are defined over a continuous vector space, rather
than a discrete grid. Thereby rendering learned feature rep-
resentations translation invariant even for irregularly struc-
tured inputs (Simonovsky and Komodakis, 2017, Wu et al.,
2019, Groh et al., 2018, Wang et al., 2018, Fey et al., 2018).

In contrast, we propose an end-to-end learning paradigm
that directly processes vector coordinates, without the need
to manually engineer Geometric Features. Instead of rely-
ing on a more complex model, we introduce a relatively
simple CNN based Feature Extraction Block and assess its
ability to approximate geometrical parameters of local tri-
angles in building footprints. A major advantage of this
self-supervised regression task is that it does not require
any manually labeled data. By stacking several of these
modules, we construct deeper models that can fully realize
the potential of self-supervised pretraining. The Geomet-
ric Embeddings learned in this self-supervised task then
serve as initialization for more complex tasks. We validate
our approach on a Building Classification (Liu et al., 2021)
and a Building Simplification problem proposed by Zhou
et al. (2023). For the Simplification task, we propose an
Encoder-Decoder structure, akin to Unet (Ronneberger et
al., 2015), which is based on our Feature Extraction Block.

2. Related Work

Vector based representations of buildings offer advantages
for spatial analysis over rasterized data, yet direct process-
ing of vector coordinates in Deep Learning for building
data remains largely underexplored, due to the challenges
presented by its irregularly sampled and lower dimensional
nature.

Liu et al. (2021) propose Deep Point Convolutional Net-
works (DPCN), replacing typical convolutional layers by
subtracting neighboring node activations. They stack these
blocks into a modular architecture similar to Pointnet (Qi
et al., 2017) for Building Classification. They also resam-
ple footprint vertices equidistantly to a fixed number on the
polygon’s boundary, restoring the inductive bias for CNNs
that typically excel on regularly sampled grids.

Mai et al. (2023) compute differences to the p-next neigh-
bors and feed these enhanced feature representations into a
ResNet (He et al., 2016). Furthermore, they make a princi-
pled analysis of the invariances that a polygon embedding
should exhibit. These are loop origin, trivial vertex and
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part permutation invariance, as well as topological aware-
ness. Out of these four, they achieve loop-origin invariance
with ResNet by applying circular padding.

Zhou et al. (2023) feed edge lengths, rotation angle, and
edge direction into a GNN in a Building Simplification
task. GNNss seem to be a promising alternative for polygo-
nal data, as they can incorporate the inductive biases inher-
ent in graph structures. However, we argue that GNNs are
not necessarily optimal for data with highly constrained
geometric properties, like building footprints, where ver-
tices have a fixed degree of two.

Veer et al. (2018) apply a relatively shallow CNN directly
on vector coordinates, but use data binning and zero padding
to remedy the variable sized data of building footprints. In
our experiments we discovered a stark degradation of per-
formance when using binning methods and we resort to a
batch size of 1 instead.

Unlike previous methods, we design a CNN based Fea-
ture Extraction Module that directly processes vector co-
ordinates. Instead of relying on handcrafted features or
complex architectures to incorporate geometrical knowl-
edge into the model, we develop a self-supervised pretrain-
ing scheme that enables the model to extract relevant Geo-
metric Embeddings. In the following we will describe our
method in more detail. Next, will stack this Feature Ex-
traction module several times to solve the more complex
task of Building Shape Classification, before we build an
even deeper Unet-like architecture from the same module
and turn to the Building Simplification task from Zhou et
al. (2023). Finally, we conclude our presented work and
discuss potential caveats and future research directions.

3. Methodology and Experiments

In this section we describe our CNN based Feature Extrac-
tion module in detail and show that it can extract geometri-
cally relevant features on a self-supervised regression task.
Building on this, we turn to more complex Building Clas-
sification and Simplification tasks and describe the partic-
ular architecture for each task in detail. Furthermore, we
directly report results on each subtask.

We propose a CNN based geometrical Feature Extraction
module that uses 1D convolutions with filter size 3 and cir-
cular padding as a way to aggregate features from neigh-
boring vertices. An illustration of this can be seen in Figure
1. As described in (Mai et al., 2023), circular padding adds
the last element in the node sequence to the front and the
first element to the end, so that the convolution result be-
comes invariant to the choice of start node of the sequence.
The aggregated features are then refined through a 3-layer
node-wise MLP, implemented with 1D convolutions which
are followed by a normalization layer and ReLU activa-
tion (Figure 2). Notably, convolutions inherently handle
variable-sized input, making this approach naturally com-
patible with building footprints of different sizes. In order
to be able to process geometries with batches, one needs to
first divide the data into buckets with same length (Veer et
al., 2018). However, we have observed a severe decline in
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Figure 1. Visualization of a standard convolutional layer with filter size 3 and circular padding for local feature aggrega-
tion. The Input features of the first layer are the (x,y) coordinates of the footprint vertices
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Figure 2. Architecture of the proposed building block
block. Conv(3) is a 1d convolution with filter size 3 and cir-
cular padding. The MLP are 3 linear layers, implemented
as convolutions of size 1, followed by normalization and
ReLU.

performance for these bucketing techniques and resort to a
batch size of 1, instead.

We normalize the data by subtracting footprint centroids
from each coordinate. Generally, we do not see any im-
provements from normalizing coordinates by dividing with
the standard deviation as in (Veer et al., 2018). In all of our
experiments, we use Adam optimization with weight de-
cay of le-6 (Kingma, 2014), Cosine Annealing to adapt
the learning rate (Loshchilov and Hutter, 2016) and ReL.U
activation functions.

Firstly, we show that we can extract geometrical properties
of local triangles using this simplistic building block. We
will later leverage this self-supervised pretraining scheme
to effectively tune a deeper model for Building Classifica-
tion and Simplification.

3.1 Self-Supervised Local Feature Extraction

Building on the tradition of Geometric Feature Engineer-
ing in vector data processing, we propose a novel approach
that leverages Deep Learning to discover geometrically rel-
evant features rather than manually crafting them. Our
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Figure 3. Box plots of geometric properties from local tri-
angles in our training set, comprising N = 30352 building
footprints. The sine and cosine are omitted. All values are
plotted in log scale. Outliers are plotted as dots outside of
the delimiters, while the colored area inside the box shows

the first quartile.

methods learns to extract meaningful geometric informa-
tion directly from vector coordinates through self training,
effectively learning embeddings that capture the spatial re-
lationships inherent in building footprints.

In a preliminary task, we aim to regress geometrical prop-
erties of local triangles within the building footprints. To
this end, we employ the shallow building block described
before, with one convolutional layer and kernel size 3, fol-
lowed by a 3-layer MLP. Each layer has 256 output chan-
nels. Finally, a linear convolution with kernel size 1 pro-
duces the regression targets. We omit any normalization
layers due to the shallowness of the model and the simplis-
tic nature of the task.

We use the footprint dataset from Zhou et al. (2023), Feng
et al. (2019) in the scale 1:10.000. Any footprints with
a sequence length greater than 40 and with 3 consecutive
collinear vertices are discarded, arriving at a total dataset
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size of N = 37941 buildings. We split these buildings into
train-, valid- and test set with a ratio of 8 : 1 : 1, respec-
tively. We then calculate k = 7 geometrical properties from
local triangles within the building footprints, namely edge
lengths of the triangle legs and base, sine+1, cosine+l,
area and height of the triangle. The model is trained with
the mean absolute error (MAE) loss for 200 Epochs. The
learning rate is gradually annealed between A9 =1e-4 and
Amin =1e-6. Since the individual distributions of the re-
spective regression targets vary rather significantly, we di-
vide the loss by the standard deviation for each target

k n

1 . .
L=} Y — 5 -yl @
i j i

Here, k = 7 is the number of regression targets and » is
the number of vertices in a batch. A boxplot of the target
distribution can be seen in Figure 3. One can see that each
distribution shows a substantial fraction of outliers. The
Root Mean Squared Error (RMSE) and relative errors are
presented for each geometrical property. The relative error
is calculated as

Y7 (i _yi)Z.

E, =
re Z:,ylz
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We achieve errors in the order of 1e-2 for most properties,
as can be seen in Table 1.

We further assess our model’s performance on two more
complex tasks: Building footprint classification and carto-
graphic generalisation.

3.2 Building Classification

After establishing our methodology for learning Geometric
Features directly from vector data, we now demonstrate
its practical application in the important geographical task
of Building Classification, where automated recognition of
building types can significantly enhance urban planning,
asset management, and cartographic processes.

For classification, we stack five of the described local Fea-
ture Extraction blocks (Figure 2) on top of each other and
perform Maxpooling. Batch normalization layers follow
after each convolutional layer, except in the first Feature

Geometrical Properties | RMSE | Relative Error
LengthInf 0.0150 0.0015
LengthSup 0.0149 0.0017
LengthBase 0.0189 0.0015
Cosine+1 0.0049 0.0146
Sine+1 0.0037 0.0133
Area 1.6682 0.1482
Height 0.0131 0.0035

Table 1. Root Mean Squared Error (RMSE) and relative er-
rors of the proposed CNN based Feature Extraction Block
for predicting local geometrical properties of building foot-
prints.
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Figure 4. Randomly selected building footprints of each
class. The colours indicate predicted class labels from our
model, with ground truth values as shown in the legend.

Extraction block (Ioffe and Szegedy, 2015). ReLU activa-
tions are used throughout the network and output logits are
produced by a fully connected layer. We train the model by
minimizing its Cross Entropy, averaged over mini batches
of size 32. The specifications are given in Table 2. We
use the dataset from Yan et al. (2021) and follow the setup
from Liu et al. (2021), to split the data into training and
test set with a ratio of 8 : 2. Liu et al. (2021) resample the
building footprints to a fixed length of L = 16 vertices per
footprint, using the Douglas-Peucker Algorithm (Douglas
and Peucker, 1973). In practice, we also observe much bet-
ter results with resampled data, compared to a minimum
number of vertices per footprint and follow this protocol.
We set the learning rate to A9 = 0.001, A,,,;,, =1e-5 and train
for 150 epochs.

We report accuracy, precision, recall, and macro F1-score,
averaged across n = 5 experimental runs for robust eval-
uation. Our model significantly outperforms previous ap-
proaches (Table 3). Figure 4 illustrates examples of cor-
rectly classified building footprints.

3.3 Cartographic Generalisation

Building on our Feature Extraction Block described in Sec-
tion 3.1, we now turn to a much more challenging and
practical application in digital cartography: Cartographic
Generalisation. This process traditionally required inten-
sive manual work and rule based algorithms. In order to
solve this task we will require deeper models that can ef-
fectively account for the abundant variations seen in Build-

Layer Name Output Dimension
Input Layer 2xL
Block1 (No norm) 256 x L
Block2 256 x L
Block3 512x L
Block4 512x L
Block5 1024 x L
MaxPool 1024 x L
Flatten 1024
FC1 n_classes
Table 2. Specification of the network architecture for

Building classification. On the right the output dimension
of the respective layer is shown, where L = 16 denotes se-
quence length of vertices. Batch dimensions are omitted
for simplicity. FC1 is a linear layer that outputs class log-
its.
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Figure 5. Architecture of Unet like model for Building Simplification. L denotes the vertex sequence length of a given
footprint. Orange blocks (left) show the input coordinates and their linearly downsampled version. Blue blocks in the
center show intermediate feature activations with the respective dimensions. Green blocks (right) show the task specific
activation maps for regression and classification. A label dependent mask is multiplied to the regression outputs, setting
non-move nodes to zero. Triangle Feature Extraction Blocks are implemented with residual connections, adding their

inputs to the outputs. More information is given in the text.

ing Simplification. Furthermore we heavily rely on our
self-supervised pretraining task from Section 3.1, enabling
the model to extract Geometric Features.

We adopt the Building Simpification task from Zhou et
al. (2023), as a combined node classification and regres-
sion problem. In this formulation, the simlplified building
polygons are obtained from either clssifying a vertex as
remove, keep or move. Displacement vector magnitudes
within the node’s local reference frame with respect to it’s
both neighboring vertices are regressed by a separate task
head. To this end, we use the previously described building
blocks (Figure 2) in an Encoder-Decoder structure, simi-
lar to Unet (Ronneberger et al., 2015). As this model is
considerably deeper than the previous ones, we also use
residual connections that add the input of each block to it’s
output, as well as adopting a bottleneck design, reducing

Metrics Model

Our Method | DPCN
Accuracy 0.9919 0.9842
Precision 0.9331 0.9902
Recall 0.9980 0.8376
F1 score 0.9582 0.8874

Table 3. Results for Building Classification. Mean values
are reported over n=5 experiments and compared to results
in DPCN (Liu et al., 2021).

the channel dimension before each convolution of size 3
(He et al., 2016). Furthermore, we add a Dropout layer
with p = 0.2 for the MLP block (Srivastava et al., 2014).

In the encoder path, the spatial dimension is reduced by a
fraction of % after the second Feature Extraction Block.
In the decoder path, the original spatial dimension need
to be restored by upsampling. We use a linear convo-
lutional kernel of size 3 and circular padding, where we
sample every second node activation (e.g. with stride 2)
for downsampling and linear interpolation for upsampling.
Feature activations of the encoder path are concatenated
to the decoder path. Furthermore, we concatenate input
coordinates to each block, guiding the model to learn ge-
ometrically meaningful representations. In order to con-
catenate the coordinates to the downsampled feature acti-
vations, we also directly downsample the footprint coordi-
nates in the same way. After the last block, the final fea-
ture activations are then processed by task specific heads,
implemented as 2-layer MLPs with dropout after each ac-
tivation with rate p = 0.2. Finally, as in (Zhou et al., 2023),
regression outputs are set to zero which are not classified
as move nodes by multiplication with a mask that depends
on the predicted class labels. This creates an imbalance
in the dataset, which we counteract, by weighting the loss
functions proportionally to the class frequencies. We use
Cross Entropy for classification and MAE for regression.
Furthermore, we employ group normalization with a group
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Figure 6. Quantiles for 1-IoU and Hausdorff Distance(HD) of reconstructed building footprints are shown. With corre-
sponding values for each metric depicted on the bottom left corner.
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Figure 7. Example of Ground truth and predicted node
labels on the Building Simplification task.

size of 16 and ReLU’s throughout the network (Wu and He,
2018). In total our model comprises six Feature Extraction
blocks, followed by two task-specific MLP’s of 2 layers
each. The architecture can be seen in Figure 5.

Such deeper models require large datasets to effectively

tune the vast number of parameters. However, high qual-
ity annotated data is scarce. One promising approach is
self-supervised learning, where the model is first trained
on a different but related pretext task (Wang et al., 2022).
The model’s learned representations can then be leveraged
for the downstream task at hand. In our case, we use the
learned Geometric Embeddings from the regression task
(Section 3.1) to pretrain the model in a self-supervised fash-
ion before training on the Cartographic Generalisation task.

We use the dataset of simplified buildings in the City of
Stuttgart from Zhou et al. (2023), which was first descibed
in (Feng et al., 2019). The dataset consists of a total of
8494 building footprints, with corresponding ground truth
simplifications. These are split into train-,test- and vali-
dation set with a ratio of 6:2:2, respectively. Despite the
relatively small size of the dataset, we observe satisfactory
results even for relatively deep models, due to our self-
supervised approach. The learning rate is annealed in the
range of [1e-4,1e-6] and we train for 500 epochs.

We report MAE for regression, as well as Accuracy and
macro-averaged F1-score for node classification. Further-

Model Remove PreMove | NextMove
Accuracy F1-Score MAE MAE
CNN 0.871 0.836 0.242 0.241
CNN-+features 0.868 0.836 0.241 0.240
CNN+pretraining 0.904 0.873 0.236 0.235
GCN 0.481 0.395 0.278 0.277
GraphSAGE 0.630 0.557 0.278 0.278
SplineCNN 0.708 0.614 0.2829 0.2682
Zhou et al. 0.862 0.926 0.390 0.388

Table 4. Results on the cartographic generalisation task, reporting MAE for regression and Accuracy and macro-averaged
F1-Score for node classification. Results of our proposed CNN based model are compared to similar GNN archiectures
(GCN,GraphSAGE, SplineCNN), as well as results from Zhou et al. (2023).
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more, we compare our CNN based framework to several
architectures based on Graph Convolutions. To this end,
we replace the convolutional layer of kernel size 3 in the
previously described Feature Extraction Block (Figure 2),
with a Geometric Convolution and stack this block four
times. Specifically, we test the Graph Convolutional Layer
(GCN) (Kipf and Welling, 2016), GraphSAGE (Hamilton
etal., 2017) and SplineCNN (Fey et al., 2018) and also use
these models to directly train on vector coordinates. We
present further ablation studies by enhancing the input fea-
ture vector with differences to neighboring vertices as in
(Mai et al., 2023, Liu et al., 2021), as well as evaluating the
performance of the proposed model without pretraining.
Besides, we show the results from Zhou et al. (2023) for
better comparison. The results are summarized in Table 4,
highlighting the efficacy of purely CNN based deep mod-
els even on geometric tasks such as Cartographic General-
isation. Additionally, we calculate Intersection over Union
(IoU) and Hausdorff distance (HD) between predicted and
ground truth reconstructions. Quantiles of these metrics
are shown in Figure 6.

4. Discussion

We investigated CNN-based modules for building poly-
gons, demonstrating that our Feature Extraction blocks can
learn Geometric Embeddings directly from vector coordi-
nates (Table 1). This approach, when stacked in a Building
Classification task, outperformed previous methods (Table
3). For Building Simplification, our Unet-like architecture
with self-supervised pretraining surpassed GNN-based for-
mulations on several metrics (Table 4).

Self-supervised pretraining proved valuable for deeper mod-
els requiring substantial data, while showing minimal ben-
efit for shallower networks. Similarly, advantages of hand-
designed features become negligible with increased net-
work depth. This demonstrates the capacity of Deep Learn-
ing to extract geometric representations from raw coordi-
nates without engineered features.

Our work reveals the effectiveness of CNN architectures
for processing vector coordinates in constrained spaces,

even outperforming comparable GNN-based approaches (Ta-

ble 4). Unlike rasterization methods, our model operates
directly on geometric data, preserving spatial relationships.
This suggests that Convolutions effectively aggregate node
features from neighboring vertices in building shape anal-
ysis, without the need of specialized architectures that in-
corporate geometrical knowledge.

For Building Simplification, our Unet-like model with ef-
fective self-supervised training surpassed the impressive
results in Zhou et al. (2023) on several metrics (Table 4).
Figure 6 shows nearly half the dataset with zero error and
up to 75% with distances to Ground Truth reconsructions
close to zero. Nevertheless, some outliers occur when nodes
are mislabeled as "remove." Training schemes specifically
targeting this issue could potentially improve results.

While our results suggest that our models learn Geometric
Features effectively, CNNs remain dependent on shifts in
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irregular vector spaces. Results from Liu et al. (2021) indi-
cate equidistant sampling to a constant number of vertices
improves performance by generating a regularly sampled
grid on the polygon’s boundary. This appropriate induc-
tive bias for CNNs could also benefit tasks like Building
Simplification.

Despite our advances, some geometric properties remain
challenging for our models (Table 1). Future work could
explore self-supervised training for more advanced archi-
tectures like Transformers (Vaswani et al., 2017), poten-
tially offering greater efficiency through larger batch train-
ing.

5. Conclusion

This work introduces a CNN-based model for processing
vector geometries directly from 2D coordinates, offering
an efficient and scalable alternative to existing methods.
By avoiding hand-crafted features and complex architec-
tures, our approach enables end-to-end learning for a wide
range of GeoAl applications, including Building Classi-
fication and Cartographic Generalisation. We explicitly
make use of learning Geometric Embeddings in a self-
supervised manner, leveraging the full potential of deep
models even on tasks with little annotated data.

Our framework addresses several key challenges in apply-
ing Deep Learning to vector geographic data. First, by
learning geometric properties through self-supervision, we
eliminate the need for extensive manual Feature Engineer-
ing that has traditionally been required when working with
vector representations. Second, our relatively simple CNN
based Feature Extraction blocks provide competitive per-
formance while maintaining computational efficiency. The
effectiveness of our approach was demonstrated across mul-
tiple tasks of increasing complexity. From the initial re-
gression of local geometrical properties to Building Classi-
fication and finally to the intricate problem of Cartographic
Generalisation, our model consistently delivered robust per-
formance. Future developments may include investigation
of self-supervision for more complex architectures as well
as integration with other types of geometrical vector data.
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