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Abstract: The precise mapping of crop spatial distribution using remote sensing datasets is a fundamental task in
precision agriculture, which has experienced profound development triggered by the continuous improvement of earth
observation systems jointly with the innovation of machine learning theories. However, the extraction and classification
of cultivated areas are typically accomplished simultaneously with single-task models at pixel scale, and the prior
geographical knowledge was generally ignored, which may present accuracy limitation and significant separation from
the monitor application. In response, the proposed work is a novel attempt to address successively the parcel extraction
and parcel-wise crop classification over mountainous regions with heterogeneous and fragmented smallholder agriculture.
Land parcels get precisely delineated utilizing an improved Densely Connected Link Network (D-LinkNet) with geo-
knowledge as prior constraints. Each parcel is then correlated with its closest neighbors considering the environmental
and temporal similarity, and classified subsequently by a proposed attention-based Network. Results show that ideal
precision was attained in both stages. The incorporation of prior knowledge and neighborhood information has effectively
enhanced the accuracy of parcel extraction and crop classification, respectively. Overall, the parcel-wise crop mapping
framework may constrain the analysis range within the agricultural space and provides identification results
corresponding to real geographic objects, contributing directly to the downstream applications such as crop monitoring,
management decision-making, etc.
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remote sensing platforms, from medium resolution
(Landsat, Sentinel-1/2) to very high resolution (Gao Fen,

As the world’s population continues to grow alongside  pjanet) and unmanned aerial vehicles (Li et al., 2023;
limited arable land resources (FAO, 2023), timely and  \waldner and Diakogiannis, 2020). Historically, the
accurate monitoring of crop cultivation conditions appears  gelineation of ACPs has predominantly relied on object-
increasingly important for comprehensive evaluation and  paseq jmage analysis (OBIA) methods including edge
decision-making in agricultural production management  getection and region segmentation. These methods are
(Segarra et al., 2020). Precision monitoring of Crop  generally efficient in open, flat areas with clear boundaries
distribution encompasses two critical dimensions: precise  \yhile vulnerable to noise and weak edge recognition issues
spatial morphology, which means the precise delineation  for fragmented regions. Recently, with the progress in
of the agricultural cultivation parcels (ACPs); and accurate  jmage processing, deep learning, especially convolutional
type attributes, ~which means the unequivocal  peyra| networks (CNNSs), have proven to be powerful tools
identification of the crop type corresponding to each unit  for ACPs extraction. Various network architectures have
(Beeri and Peled, 2009). Conventional methodologies for  peen jmplemented for the parcel extraction, including
crop distribution surveys typically relies on annual farmer-  {ep  RCF and U-Net, DeepLab V3+, D-Linknet.
reported data and the official statistical consolidation,  yowever, despite significant advances in model
which may suffer from considerable ambiguity and  architectures, the complex characteristics of mountainous
uncertainty, limiting access to detailed parcel-based  agriculture pose unique challenges that cannot be

information. In contrast, remote sensing has emerged as a adequately addressed by model refinement alone. The
superior alternative, offering the low-cost and wide-area  gpstacles appear particularly evident in regions
coverage for precise parcel delineation and crop  characterized by heterogeneous, fragmented smallholder
classification. farming systems with highly regionalized ACP

For the precise extraction of ACPs, numerous studies  morphology, diversified parcel types, obscure distinction
have explored the automatic derivation using various  petween ACPs and wooded grasslands. Recent studies

1. Introduction
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have demonstrated that leveraging prior geospatial-
temporal knowledge, which generally involves spatial
constraints and stratification strategies, can significantly
enhance the robustness and accuracy of remote sensing
applications (Zhu et al., 2024b, 2024a), while there
remains a critical gap in effectively integrating
comprehensive geographical knowledge into ACPs
extraction methodologies. In response, we designed a
comprehensive framework that combines the prior
knowledge with an improved Densely Connected Link
Network (D-LinkNet) for ACPs extraction from the VHR
images.

For the accurate crop classification, the phenological
patterns get efficiently recovered based on the sequential
remote sensing images and the target crops are then
convincingly recognized using various series analysis
methods (Niazmardi et al., 2018). Overall, the recognition
unit serves as the bridge between real surface and
quantitative analysis methods in the digital world,
representing the elementary knowledge of the study area.
Image pixels are adopted in most frameworks as the basic
unit for classification (Pixel Based Image Analysis, PBIA)
(Bargiel, 2017; Xu et al., 2024), which is computationally
efficient but susceptible to the influence of mixed pixels and
edge effects, and may fail to fully capture the spatial
structural information of crops (Chen et al., 2016; Mondal
and Jeganathan, 2022). Object-Based Image Analysis
(OBIA) was then proposed and widely conducted, where
each meaningful or homogeneous group of pixels is treated
as an object with certain characteristics and properties
(Cheng and Zhang, 2022; Niazmardi et al., 2018). OBIA
allows for semantic analysis of the image and the
relationships between objects are potentially considered,
which proves to be more accurate than the PBIA approach
under ideal segmentation conditions. However, most of the
researches were implemented in plain areas where the land
parcels exhibit typically regular geometric shapes and
appear as tightly arranged quadrilateral-shaped features on
high-resolution remote sensing images, and parcels are
typically derived utilizing segmentation methods, leading to
significant discrepancy with the actual surface features.
Besides, each entity is typically regarded as an independent
computing unit, ignoring its neighborhood information that
may aid in feature completion and noise resistance.
Consequently, a parcel-wise classification method utilizing
neighborhood information was adopted to achieve better
accuracy control.

Overall, a novel parcel-wise framework was proposed in
this work for the accurate monitoring of crop cultivation
conditions. Land parcels get precisely delineated utilizing
the improved D-LinkNet with geo-knowledge as prior
constraints.  Multi-source datasets are then integrated
within each parcel's spatial boundary to fully depict
temporal cover changes and environmental conditions.
Consequently, parcel relationships are established based
on environmental and sequential similarities, and crop
types are identified using parcel-wise time series features
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and neighborhood information.

2. Study area and materials

2.1 Study area

The experiments for parcel extraction and classification
were conducted in Jiangjin and Tongnan districts of
Chongging, China, as shown in Figure 1., both districts are
located in the eastern part of the Sichuan Basin,
downstream of the Fu River. The two districts keep a
temperate subtropical humid monsoon climate with an
annual average temperature of 17.9<C, 19.5<C and a total
rainfall of 969.2, 1001.2 millimeters, respectively,
indicating an ideal hydrothermal condition for crop
cultivation. Generally, the agricultural system in
mountainous areas of Southwest China is characterized by
complex terrain, diverse cultivation patterns, and intricate
meteorological conditions with frequent cloud cover and
rainfall, which is fully reflected in both areas.
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Figure 1. The location of the study areas. Distinct colored points
denote the spatial locations of ground sampling across various
batches.

In this study, the controlled experiments of the parcel
extraction and crop classification were implemented in
Jiangjin and Tongnan, respectively.

2.2 Data collection and pre-processing
1) Ground truth data:

The ground truth data were obtained through field
surveys conducted separately in November 2021, March
2022, and June 2022. 2,033 sample points were annotated,
as shown in Figure 1. All sample points were matched with
corresponding land parcels and cross-validated based on
high-resolution images. Consequently, a total of 1,502
parcels were labeled for model training and validation,
including rice, corn, lemon and other types, and provide
supervision signal in the classification process.

2) Remote sensing data:

Both the high- and mid-resolution images were utilized
in this study for the parcel extraction and crop
classification correspondingly.

a) High-resolution images from GF-2 satellite.
Images with a spatial resolution of 0.8 meters were utilized
as the data source to extract arable land parcels. Cloud gaps
were addressed by mosaicking multi-period GF data.
These images function as the data source to extract arable
land parcels.

b) Mid-resolution series images from Sentinel
satellites. Both radar and optical datasets were
incorporated in this study.
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For the former, Synthetic Aperture Radar (SAR)
imagery obtained from the C-band sensor SAR on the
Sentinel-1 (S1) satellite of the European Space Agency
(ESA) was adopted as the data source in the assessment of
sequential similarities. The essential preprocess was
conducted with SNAP software to retrieve the
backscattering coefficient (i.e., VV and VH) consequently.

For the latter optical images, Sentinel-2 (S2) images
derived from the "COPERNICUS/S2_SR" product suite
provided by the GEE platform were selected. The official
Sentinel-2 cloud mask dataset
(‘“COPERNICUS/S2 CLOUD_ PROBABILITY”) was
also obtained and merged with the original images for the
detection of potentially cloudy pixels. NDVI series reflect
the land cover changes within the parcels, and are directly
utilized as input features for classification.

3) Environmental factors:

Factors related to crop phenology were also collected
for a comprehensive description of environmental
conditions, including the historical climate data from the
WorldClim (Fick and Hijmans, 2017), current climate data
from the National Tibetan Plateau Environment Data
Center (TPDC) (Ding and Peng, 2021, 2020; Peng et al.,
2019), the Digital Elevation Model (DEM) data sourced
from the ALOS PALSAR sensor, the Hydrographic data
derived from the OpenStreetMap, and the soil subtype data
acquired from the Harmonized World Soil Database
(Harmonized World Soil Database version 2.0, 2023).
These datasets are employed for environmental
consistency assessment, thereby facilitating natural zoning
and parcel-wise correlation analysis.

3. Methods

In this study, the parcel extraction and crop
classification are sequentially achieved leveraging the
aforementioned multi-source datasets. Land parcels are
delineated utilizing the improved D-LinkNet following a
stratification strategy within different geographical zones.
Parcels are then perceived as nodes in a correlated graph
and classified by a proposed attention-based neural

network. Here follows the detailed description of each step.

3.1 Parcel extraction with prior information and deep
learning

Figure 2 illustrates the workflow of the parcel extraction.

First, geographical zoning was utilized to establish a
confined area for sample production and to enable parallel
computing or comparative analysis, while historical data
was employed to define the maximum boundary to
mitigate the confusion between the target and the
background in the deep learning predictions. Next, a
stratification strategy was developed based on significant
or unique boundaries and texture features of anthropogenic
agricultural traces and structures, with ACPs extracted
using the improved D-LinkNet (Xia et al., 2021). The
predicted rasters were binarized to raster edges, then
converted to vector lines of SHP format, and further
transformed to vector polygons. Manual correction of
obvious topological errors and merging of over-segmented
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patches were then implemented, yielding the vectorized
representation of land parcels, which serve as the
fundamental spatial units for subsequent feature
construction and type inference.
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Figure 2. Workflow of the parcel extraction method.
3.1.1 Geographical zoning and Coarse spatial scope

1) Geographical zoning

Geographic data patterns follow principles that
highlight correlations among proximate objects and
homogeneity in similar backgrounds. Zoning refers to
dividing a complex area into multiple units characterized
by relatively internal homogeneity and external
heterogeneity, which was implemented in this study to
harmonize natural and anthropogenic influences within
sub-regions for uniform parcel characteristics, facilitating
sample collection and enhancing regional comprehension.

Vegetation cover status represented by the mean values
of NDVI in March, August, the growing season (April-
October), and the important phenological note (maturity)
served as the response variables, and environmental
indicators (i.e., the mean values of temperature in March,
arid index, slope, altitude, and soil, along with the
vegetation cover indicators) were selected as explanatory
variables based on the correlation analysis. To avoid
overfitting from environmental data multicollinearity,
redundancy analysis (RDA) (Rao, 1964) was used to
explore relationships between response and explanatory
variables, with 200 points randomly selected for the
analysis process using the "vegan" R package.
Subsequently, the Spatial Toeplitz Inverse Covariance-
Based Clustering (STICC) (Kang et al., 2022) method was
employed to obtain the partitioning results based on the
inferred vegetation cover status.

2) Coarse spatial scope

Geographical objects undergo scale-dependent changes,
necessitating a top-down approach to image understanding
that mimics human perception, which typically starts with
macro perspectives and refines to specific objects of
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interest. Given the potential for confusion between similar
features, such as farmland boundaries and roads, it is
necessary to filter out irrelevant non-agricultural areas.
Considering the stability of agricultural (planting) spaces
under policy-driven management, the coarse agricultural
spatial scope was derived from historical land use data in
this study.

3.1.2 Stratification strategy and Network model

Land reclamation and cultivation processes have created
distinctive features across different agricultural land use
types (i.e., paddy fields, drylands, pepper gardens, and
other gardens), which are critical for translating ACPs
mappings from imagery into geospatial data.
Consequently, a hierarchical strategy was applied for the
sequential extraction of distinct types from simplicity to
complexity (i.e., paddy fields, pepper gardens, other
gardens and drylands), allowing each single-task deep
model to focus on edge or texture features contrapuntally
for different ACPs.

The D-LinkNet (Zhou et al., 2018) was selected due to
its effectiveness in handling complex structures and multi-
scale features. To further enhance feature representation, a
coordinate attention (CA) (Hou et al., 2021) module was
integrated into the center part of the original structure, and
the single mapping between the encoder and decoder parts
was substituted by richer skip connections (Xia et al.,
2021).

3.1.3 Stratification strategy and Network model

Based on the model’s raster outputs, the closed, discrete
polygons are created through morphological optimization
(i.e., edge enhancement and hole elimination) and contour
acquisition. Ultimately, the Marching Cubes and Douglas-
Peucker algorithms (Li et al., 2023) were utilized to
generate parcel vectors.

After the vector generation, under-segmentation was
recognized by the certain uniformity within the correct
parcel’s interior. Eq. (1) was applied to assess the internal
variation of each candidate parcel, utilizing the three bands
of the VHR imagery as attribute features. Parcels with
variability surpassing a predetermined threshold will
undergo human-computer interaction and iterative
optimization. Prior to these calculations, de-edge
processing was performed to exclude any potential
abnormal  fluctuations in the edge pixels if
allowed.

Variation =

M

where X and n refers to the mean and number of pixels in
a parcel.

3.2 Parcel-wise crop classification

As shown in Figure 3., The proposed framework for
crop classification consists of two interrelated steps (i.e.
feature construction and correlation establishment and
crop identification), and here follows the detailed
description of each step.
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Figure 3. Flowchart for parcel-wise crop identification.

3.2.1 parcel-wise feature construction and correlation
establishment

The zonal statistical analysis was implemented based on
the extracted ACPs. For each parcel, the pixels within its
spatial boundary were gathered and statistical indicators
(the median in this study) were calculated afterward to
generate parcel-wise features. Both NDVI and VH features
were constructed for the subsequent parcel-wise
correlation construction and type inference. Additionally,
the vegetation cover status calculated in 3.1 was also
mapped to each parcel as a comprehensive indicator of
environment characteristics.

Subsequently, the correlation between parcels got
judiciously constructed considering both environmental
and temporal similarities. The former was reflected
directly by the vegetation cover status, and the temporal
similarity was evaluated based on the VVH values utilizing
the Dynamic Time Warping (DTW) algorithm. The
similarity was defined as the inverse of the calculated
DTW distance as follows.

1

14+ DTW (s, s;) @
where s, and s; denote the VVH series for the target parcel
and its candidate neighbors respectively. Before
computation, the original feature values are standardized
to the 0-1 interval based on the minimum-maximum
normalization.

Both similarities take effect in sequence during the
correlation construction, reducing gradually the searching
space of the candidate neighbor set. k., parcels with the
closest vegetation cover status were picked out, where
Keny IS @ quantity threshold set manually. Consequently,
kseq parcels with the most similar VH series were then
selected as the final neighborhood units, and the values
were adopted as the correlation strength.

3.2.2 Crop classification using attention-based model

Based on the NLP transformers (Vaswani et al., 2017),
this study wuses Temporal Attention (TA) and
Neighborhood Attention (NA) modules to explore

Sseq =

Proceedings of the International Cartographic Association, 7, 5, 2025 | https://doi.org/10.5194/ica-proc-7-5-2025
32nd International Cartographic Conference (ICC 2025), 17-22 August 2025, Vancouver, Canada.
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.



dependencies from different angles. In NA, the target and
neighbor parcels are treated as tokens with NDVI series as
original features; in TA, time-point features are tokens and
the full sequence is the context. A class token is added at
the start, and all tokens are projected to a high-dimension
tensor before multi-attention processing. The modules are
cascaded to ensure reliable pattern recognition.

NA and TA structures are defined by key parameters—
number of layers and attention heads—with optimal values
varying by input features. For this study's 29-time-point
NDV I features and up to five neighbors, NA and TA layers
are set to 2, attention heads to 3 and 2 respectively, with

embedding dimensions at 64 and hidden dimensions at 128.

4. Results

4.1 Parcel extraction

Four metrics were selected including overall accuracy
(OA), Kappa coefficient, F-1 score, and the mask
intersection over union (loU) (see Eq. (3) to Eg. (6)).
Besides, IoUpgynaar, Metric, which comprises overlap and

smoothness, was complemented for the individual
assessment (see Eq. (7) to Eq. (9)).
04 = TP +TN @)
T TP+TN+FP+FN
Kappa = 2 _Te )
wppPa=T"p
F1=2x Precision X Recall )
N Precision + Recall
Intersection
00 =—— (6)
Union
10Ugoyndary = Overlap X Smoothness @)
0verlap — Len.gthpredicted n Bufferground (8)

Lengthyreaictea
Breakpointsyreaictea
“Breakpointsg,oung '

Breakpointsgrouna

\Breakpoints,reaicrea’

where TP, TN, FP, FN refers to the true positive, true
negative, false positive, and false negative, respectively; p,
refers to the overall percent agreement, and p, refers to the
hypothetical probability of change agreement; Precision

and Recall refers to and , respectively;
TP+FP TP+FP

Buffery,.mq refers to an inward and outward zone around
the parcel boundary with a specific radius.

Fourteen validation samples, each 10001000 pixels,
were manually annotated for the former four index, and

Smoothness =

Breakpointspregictea > Breakpointsgrouna

Breakpoints,,cqictea < Breakpointsgrouna
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600 parcels were selected with a buffer zone distance of
0.8 meters (one pixel) for 1oUz,,n4qr, Calculation.

As illustrated in Table 1, the method utilized in this
study outperforms the regular method based solely on the
improved D-LinkNet, exhibiting enhancements of
approximately 0.14 in the Kappa coefficient and 0.11 in
loU. Spatial heterogeneity in extraction performance is
observed across the study area, with region 1 and region 2
exhibiting notably higher accuracy. The extraction
effectiveness for different parcel types generally aligns
with the stratification order, suggesting that more effective
separation of targets from backgrounds leads to improved
extraction outcomes. However, there are discrepancies
between the loU (total loU for 14 validation samples)
and the 1oUaverage (average loU for 14 validation samples),
which stems possibly from the coexistence of small, easily
overlooked parcels and large, prominent parcels—a
characteristic feature particularly prevalent in garden
landscapes. This heterogeneity in parcel size distribution
may introduce bias in the global evaluation metrics used
above, necessitating individual parcel-level precision
assessment. The occurrence of low value or even outliers
can be attributed to two primary factors: non-optimizable
under-segmentation and incomplete region identification
(Figure 4). Parcels with higher geometric complexity tend
to exhibit lower IoUgyunaary-

OA | Kappa | F-1 U(tmal) (average)
Regular | 0.8 | 0.703 | 0.850 | 0.740 0.739
Our 09 | 0.847 | 0.921 | 0.854 0.841
Region1 | 0.8 | 0.861 | 0.935 | 0.877 0.874
Region2 | 0.9 | 0.905 | 0.957 | 0.919 0.916
@ Region3 | 0.8 | 0.770 | 0.869 | 0.769 0.767
Region4 | 0.8 | 0.830 | 0.890 | 0.802 0.767
Paddy 09 | 0.887 | 0913 | 0.839 0.796
Drylands | 0.9 | 0.765 | 0.795 | 0.660 0.617
Pepper 0.9 | 0.937 | 0.944 | 0.895 0.664
Other 09 | 0793 | 0.797 | 0.662 0.585

Table 1. Evaluation results of the extraction.
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Figure 4. The relationship between ground truth and predicted result, and examples of IoUpynqqry Calculations on some parcels.

In Jiangjin district, 1.23 million agricultural parcels
were identified, comprising 0.50 million paddy fields, 0.45
million drylands, 0.22 million pepper gardens, and 0.06
million other gardens, covering 50.66, 51.88, 45.56, and
11.08 million acres, respectively. The distribution analysis
reveals that cultivated land and garden land constitute
approximately 77% and 23% respectively of parcel count,
a similar ratio reflected in total area. Notably, paddy fields
exhibit a lower area-to-count ratio, indicating a
predominance of smaller parcels, whereas pepper gardens
display the opposite, suggesting larger, contiguous
configurations (Figure 5). The areal distribution among
paddy fields, drylands, and pepper gardens maintains an
approximate 1:1:1 ratio, consistent with the collected
statistics. Regarding the regional distribution, the ACPs
are predominantly located outside of region 4, while region
2 exhibits the highest concentration of all the parcel types,
attributed to its favorable topographical conditions. There
are minimal differences in both area and count of paddy
fields and other gardens across region 1 to region 3, while
region 2shows a marked predominance in dryland. Pepper
gardens are concentrated in region 1 and region 2, with
minimal presence in region 3. From these data, we can
infer that the distribution of agricultural parcels in the
study area exhibits certain regularities and characteristics:
paddy fields and drylands are relatively evenly distributed,
while pepper gardens and other gardens tend to form large-
scale concentrated areas. The occurrence of low value or
even outliers can be attributed to two primary factors: non-
optimizable under-segmentation and incomplete region
identification (Figure 4). Parcels with higher geometric
complexity tend to exhibit lower 1oUgounaary-

Figure 5. Distribution maps. (A) shows the spatial distribution of
parcels and the detail maps, and (B) shows the statistical results
of parcels.

4.2 Parcel-based crop classification
4.2.1 Parcel-wise feature reconstruction and
correlation establishment

The parcel-level features of NDVI and VH were derived
based on zonal statistics, and sample points were matched
to the corresponding parcels. The characteristic curves of
various crop types are shown in Figure 6.

sul AATIPC N | o RESERENE | |

18

Figure 6. Time-series feature curve of major crops in the study
area.

Based on the comprehensive consideration of
environmental and time-series similarities, each parcel is
matched with its most relevant ones. The threshold for the
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correlation recognition is set at 0.7, with the maximum
number of neighbors capped at 5.

4.2.2 Crop classification and accuracy assessment

Based on the parcel-wise time-series features and
collected neighborhood information, the classification
process was implemented using the attention-based
models, as shown in Figure 7. The results were evaluated
based respectively on the membership degree vectors and
crop types utilizing the confusion matrix and information
entropy, facilitating a holistic assessment of uncertainty
distribution from individual to collective, categorical to
spatial perspectives.

Five metrics were selected including OA, Precision (P),
Recall (R), F1 — score, and entropy (see Eq. (3), (5), (10)
to (13)) for the accuracy assessment.

P= L (10)
T TP +FP
R= L (11)
" TP+FN
F1=2x 2R (12)
T"TP+R

where TP, TN, FP, and FN respectively denote the
number of true positive, true negative, false positive, and
false negative instances. Especially, the overall results of
P, R, and F1 are calculated as the average of different
classes weighted by the proportion of samples.

HE) == yHlogp() (13)

where y¥ signifies the membership degree to category
k(k = 1,2 ...,n) of an individual classification unit.

Especially, compared to the accuracy derived from the
confusion matrix over all the parcels, the entropy-based
method provides additional spatial information on type
uncertainty at the parcel scale, which aids in understanding
the spatial distribution of errors.

GF-2 image Land

031

Figure 7. Overall results of parcel-wise crop classification, and
detailed identification as well as uncertainty assessment for
location A and B.

The OA, P, R, F1, and uncertainty on the test set are
shown in Table 2, indicating a credible classification
performance and generalization ability in areas with
diverse environmental conditions.

Crop OA P R F1 Entropy
rice - 0.985 | 0.930 | 0.956 | 0.409
corn - 0.820 | 0.837 | 0.828 | 0.890
lemon - 0.880 | 0.956 | 0.917 | 0.771
others - 0.800 | 0.769 | 0.784 | 0.895
overall | 0.891 | 0.893 | 0.891 | 0.891 | 0.858

Table 2. Evaluation results of the crop classification.
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A controlled experiment was conducted additionally to
clarify the effectiveness of neighborhood information
(Table 3). As the ratio of the training set to the test set
decreases, the inference capability of the models gradually
decreases. The introduction of neighborhood information
may lead to a certain degree of accuracy improvement,
regardless of the integration approach, and the accuracy
improvement becomes increasingly evident as the
proportion of the training set decreases.

Proportion of train-set

0.8 0.6 0.4 0.2 0.1 0.05

Non- 0.853 | 0.848 | 0.814 | 0.770 | 0.727 | 0.135
neighbor

Neighbor | 0.891 | 0.886 | 0.874 | 0.852 | 0.802 | 0.135

Table 3. Overall accuracy under different neighborhood spaces
of different training set size.

5. Conclusion

The accurate mapping of agricultural cultivation parcels
and crop types is constantly a fundamental task in
precision agriculture, which may face severe obstacles in
mountainous areas with significant environment
heterogeneity and complex farming patterns. In response,
a novel parcel-wise framework was proposed in this work
to settle both problems based on multi-source remote
sensing datasets.

Land parcels get precisely delineated utilizing a
combined model of geographical priori information—
including heterogeneous cognition, hierarchical intra-
classes and parcel internal homogeneity—and a deep
learning algorithm. The improved D-LinkNet model was
deployed hierarchically for different land-use types under
the constraints of geographical zones and the coarse
agricultural spatial scope. Experimental results show that
the proposed approach performed superiorly in traditional
evaluation indices (e.g., OA, Kappa, F1, and loU) and
individual geometric precision of parcels. As a result,
approximately 1.23 million parcels in Jiangjin and 0.55
million parcels in Tongnan were extracted, respectively.

The land parcels were then employed as the basic spatial
units for feature construction and type inference, which
constrains the analysis range within the agricultural space
and provides identification results corresponding to real
geographic objects. Each parcel is then correlated with its
closest neighbors considering the environmental and
temporal similarity, and classified subsequently by an
attention-based network. Overall and individual metrics
indicate a credible classification performance. Besides, the
introduction of neighborhood information leads to a
certain degree of accuracy improvement, especially as the
proportion of the training set decreases, which is often the
case for surface parameter estimations.
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