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Abstract: The precise mapping of crop spatial distribution using remote sensing datasets is a fundamental task in 

precision agriculture, which has experienced profound development triggered by the continuous improvement of earth 

observation systems jointly with the innovation of machine learning theories. However, the extraction and classification 

of cultivated areas are typically accomplished simultaneously with single-task models at pixel scale, and the prior 

geographical knowledge was generally ignored, which may present accuracy limitation and significant separation from 

the monitor application. In response, the proposed work is a novel attempt to address successively the parcel extraction 

and parcel-wise crop classification over mountainous regions with heterogeneous and fragmented smallholder agriculture. 

Land parcels get precisely delineated utilizing an improved Densely Connected Link Network (D-LinkNet) with geo-

knowledge as prior constraints. Each parcel is then correlated with its closest neighbors considering the environmental 

and temporal similarity, and classified subsequently by a proposed attention-based Network. Results show that ideal 

precision was attained in both stages. The incorporation of prior knowledge and neighborhood information has effectively 

enhanced the accuracy of parcel extraction and crop classification, respectively. Overall, the parcel-wise crop mapping 

framework may constrain the analysis range within the agricultural space and provides identification results 

corresponding to real geographic objects, contributing directly to the downstream applications such as crop monitoring, 

management decision-making, etc. 
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1. Introduction 

As the world’s population continues to grow alongside 

limited arable land resources (FAO, 2023), timely and 

accurate monitoring of crop cultivation conditions appears 

increasingly important for comprehensive evaluation and 

decision-making in agricultural production management 

(Segarra et al., 2020). Precision monitoring of crop 

distribution encompasses two critical dimensions: precise 

spatial morphology, which means the precise delineation 

of the agricultural cultivation parcels (ACPs); and accurate 

type attributes, which means the unequivocal 

identification of the crop type corresponding to each unit 

(Beeri and Peled, 2009). Conventional methodologies for 

crop distribution surveys typically relies on annual farmer-

reported data and the official statistical consolidation, 

which may suffer from considerable ambiguity and 

uncertainty, limiting access to detailed parcel-based 

information. In contrast, remote sensing has emerged as a 

superior alternative, offering the low-cost and wide-area 

coverage for precise parcel delineation and crop 

classification.  

For the precise extraction of ACPs, numerous studies 

have explored the automatic derivation using various 

remote sensing platforms, from medium resolution 

(Landsat, Sentinel-1/2) to very high resolution (Gao Fen, 

Planet) and unmanned aerial vehicles (Li et al., 2023; 

Waldner and Diakogiannis, 2020). Historically, the 

delineation of ACPs has predominantly relied on object-

based image analysis (OBIA) methods including edge 

detection and region segmentation. These methods are 

generally efficient in open, flat areas with clear boundaries 

while vulnerable to noise and weak edge recognition issues 

for fragmented regions. Recently, with the progress in 

image processing, deep learning, especially convolutional 

neural networks (CNNs), have proven to be powerful tools 

for ACPs extraction. Various network architectures have 

been implemented for the parcel extraction, including 

HED, RCF and U-Net, DeepLab V3+, D-Linknet. 

However, despite significant advances in model 

architectures, the complex characteristics of mountainous 

agriculture pose unique challenges that cannot be 

adequately addressed by model refinement alone. The 

obstacles appear particularly evident in regions 

characterized by heterogeneous, fragmented smallholder 

farming systems with highly regionalized ACP 

morphology, diversified parcel types, obscure distinction 

between ACPs and wooded grasslands. Recent studies 
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have demonstrated that leveraging prior geospatial-

temporal knowledge, which generally involves spatial 

constraints and stratification strategies, can significantly 

enhance the robustness and accuracy of remote sensing 

applications (Zhu et al., 2024b, 2024a), while there 

remains a critical gap in effectively integrating 

comprehensive geographical knowledge into ACPs 

extraction methodologies. In response, we designed a 

comprehensive framework that combines the prior 

knowledge with an improved Densely Connected Link 

Network (D-LinkNet) for ACPs extraction from the VHR 

images. 

For the accurate crop classification, the phenological 

patterns get efficiently recovered based on the sequential 

remote sensing images and the target crops are then 

convincingly recognized using various series analysis 

methods (Niazmardi et al., 2018). Overall, the recognition 

unit serves as the bridge between real surface and 

quantitative analysis methods in the digital world, 

representing the elementary knowledge of the study area. 

Image pixels are adopted in most frameworks as the basic 

unit for classification (Pixel Based Image Analysis, PBIA) 

(Bargiel, 2017; Xu et al., 2024), which is computationally 

efficient but susceptible to the influence of mixed pixels and 

edge effects, and may fail to fully capture the spatial 

structural information of crops (Chen et al., 2016; Mondal 

and Jeganathan, 2022). Object-Based Image Analysis 

(OBIA) was then proposed and widely conducted, where 

each meaningful or homogeneous group of pixels is treated 

as an object with certain characteristics and properties 

(Cheng and Zhang, 2022; Niazmardi et al., 2018). OBIA 

allows for semantic analysis of the image and the 

relationships between objects are potentially considered, 

which proves to be more accurate than the PBIA approach 

under ideal segmentation conditions. However, most of the 

researches were implemented in plain areas where the land 

parcels exhibit typically regular geometric shapes and 

appear as tightly arranged quadrilateral-shaped features on 

high-resolution remote sensing images, and parcels are 

typically derived utilizing segmentation methods, leading to 

significant discrepancy with the actual surface features. 

Besides, each entity is typically regarded as an independent 

computing unit, ignoring its neighborhood information that 

may aid in feature completion and noise resistance. 

Consequently, a parcel-wise classification method utilizing 

neighborhood information was adopted to achieve better 

accuracy control. 

Overall, a novel parcel-wise framework was proposed in 

this work for the accurate monitoring of crop cultivation 

conditions. Land parcels get precisely delineated utilizing 

the improved D-LinkNet with geo-knowledge as prior 

constraints.  Multi-source datasets are then integrated 

within each parcel's spatial boundary to fully depict 

temporal cover changes and environmental conditions. 

Consequently, parcel relationships are established based 

on environmental and sequential similarities, and crop 

types are identified using parcel-wise time series features 

and neighborhood information. 

2. Study area and materials

2.1 Study area 

The experiments for parcel extraction and classification 

were conducted in Jiangjin and Tongnan districts of 

Chongqing, China, as shown in Figure 1., both districts are 

located in the eastern part of the Sichuan Basin, 

downstream of the Fu River. The two districts keep a 

temperate subtropical humid monsoon climate with an 

annual average temperature of 17.9°C, 19.5°C and a total 

rainfall of 969.2, 1001.2 millimeters, respectively, 

indicating an ideal hydrothermal condition for crop 

cultivation. Generally, the agricultural system in 

mountainous areas of Southwest China is characterized by 

complex terrain, diverse cultivation patterns, and intricate 

meteorological conditions with frequent cloud cover and 

rainfall, which is fully reflected in both areas.  

Figure 1. The location of the study areas. Distinct colored points 

denote the spatial locations of ground sampling across various 

batches. 

In this study, the controlled experiments of the parcel 

extraction and crop classification were implemented in 

Jiangjin and Tongnan, respectively. 

2.2 Data collection and pre-processing 

1) Ground truth data:

The ground truth data were obtained through field

surveys conducted separately in November 2021, March 

2022, and June 2022. 2,033 sample points were annotated, 

as shown in Figure 1. All sample points were matched with 

corresponding land parcels and cross-validated based on 

high-resolution images. Consequently, a total of 1,502 

parcels were labeled for model training and validation, 

including rice, corn, lemon and other types, and provide 

supervision signal in the classification process. 

2) Remote sensing data:

Both the high- and mid-resolution images were utilized

in this study for the parcel extraction and crop 

classification correspondingly. 

a) High-resolution images from GF-2 satellite.

Images with a spatial resolution of 0.8 meters were utilized 

as the data source to extract arable land parcels. Cloud gaps 

were addressed by mosaicking multi-period GF data. 

These images function as the data source to extract arable 

land parcels. 

b) Mid-resolution series images from Sentinel

satellites. Both radar and optical datasets were 

incorporated in this study.  
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For the former, Synthetic Aperture Radar (SAR) 

imagery obtained from the C-band sensor SAR on the 

Sentinel-1 (S1) satellite of the European Space Agency 

(ESA) was adopted as the data source in the assessment of 

sequential similarities. The essential preprocess was 

conducted with SNAP software to retrieve the 

backscattering coefficient (i.e., VV and VH) consequently. 

For the latter optical images, Sentinel-2 (S2) images 

derived from the "COPERNICUS/S2_SR" product suite 

provided by the GEE platform were selected. The official 

Sentinel-2 cloud mask dataset 

(‘COPERNICUS/S2_CLOUD_PROBABILITY’) was 

also obtained and merged with the original images for the 

detection of potentially cloudy pixels. NDVI series reflect 

the land cover changes within the parcels, and are directly 

utilized as input features for classification. 

3) Environmental factors:

Factors related to crop phenology were also collected 

for a comprehensive description of environmental 

conditions, including the historical climate data from the 

WorldClim (Fick and Hijmans, 2017), current climate data 

from the National Tibetan Plateau Environment Data 

Center (TPDC) (Ding and Peng, 2021, 2020; Peng et al., 

2019), the Digital Elevation Model (DEM) data sourced 

from the ALOS PALSAR sensor, the Hydrographic data 

derived from the OpenStreetMap, and the soil subtype data 

acquired from the Harmonized World Soil Database 

(Harmonized World Soil Database version 2.0, 2023). 

These datasets are employed for environmental 

consistency assessment, thereby facilitating natural zoning 

and parcel-wise correlation analysis. 

3. Methods

In this study, the parcel extraction and crop

classification are sequentially achieved leveraging the 

aforementioned multi-source datasets. Land parcels are 

delineated utilizing the improved D-LinkNet following a 

stratification strategy within different geographical zones. 

Parcels are then perceived as nodes in a correlated graph 

and classified by a proposed attention-based neural 

network. Here follows the detailed description of each step. 

3.1 Parcel extraction with prior information and deep 

learning 

Figure 2 illustrates the workflow of the parcel extraction. 

First, geographical zoning was utilized to establish a 

confined area for sample production and to enable parallel 

computing or comparative analysis, while historical data 

was employed to define the maximum boundary to 

mitigate the confusion between the target and the 

background in the deep learning predictions. Next, a 

stratification strategy was developed based on significant 

or unique boundaries and texture features of anthropogenic 

agricultural traces and structures, with ACPs extracted 

using the improved D-LinkNet (Xia et al., 2021). The 

predicted rasters were binarized to raster edges, then 

converted to vector lines of SHP format, and further 

transformed to vector polygons. Manual correction of 

obvious topological errors and merging of over-segmented 

patches were then implemented, yielding the vectorized 

representation of land parcels, which serve as the 

fundamental spatial units for subsequent feature 

construction and type inference. 

Figure 2. Workflow of the parcel extraction method. 

3.1.1 Geographical zoning and Coarse spatial scope 

1) Geographical zoning

Geographic data patterns follow principles that 

highlight correlations among proximate objects and 

homogeneity in similar backgrounds. Zoning refers to 

dividing a complex area into multiple units characterized 

by relatively internal homogeneity and external 

heterogeneity, which was implemented in this study to 

harmonize natural and anthropogenic influences within 

sub-regions for uniform parcel characteristics, facilitating 

sample collection and enhancing regional comprehension. 

Vegetation cover status represented by the mean values 

of NDVI in March, August, the growing season (April-

October), and the important phenological note (maturity) 

served as the response variables, and environmental 

indicators (i.e., the mean values of temperature in March, 

arid index, slope, altitude, and soil, along with the 

vegetation cover indicators) were selected as explanatory 

variables based on the correlation analysis. To avoid 

overfitting from environmental data multicollinearity, 

redundancy analysis (RDA) (Rao, 1964) was used to 

explore relationships between response and explanatory 

variables, with 200 points randomly selected for the 

analysis process using the "vegan" R package. 

Subsequently, the Spatial Toeplitz Inverse Covariance-

Based Clustering (STICC) (Kang et al., 2022) method was 

employed to obtain the partitioning results based on the 

inferred vegetation cover status. 

2) Coarse spatial scope

Geographical objects undergo scale-dependent changes, 

necessitating a top-down approach to image understanding 

that mimics human perception, which typically starts with 

macro perspectives and refines to specific objects of 
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interest. Given the potential for confusion between similar 

features, such as farmland boundaries and roads, it is 

necessary to filter out irrelevant non-agricultural areas. 

Considering the stability of agricultural (planting) spaces 

under policy-driven management, the coarse agricultural 

spatial scope was derived from historical land use data in 

this study. 

3.1.2 Stratification strategy and Network model 

Land reclamation and cultivation processes have created 

distinctive features across different agricultural land use 

types (i.e., paddy fields, drylands, pepper gardens, and 

other gardens), which are critical for translating ACPs 

mappings from imagery into geospatial data. 

Consequently, a hierarchical strategy was applied for the 

sequential extraction of distinct types from simplicity to 

complexity (i.e., paddy fields, pepper gardens, other 

gardens and drylands), allowing each single-task deep 

model to focus on edge or texture features contrapuntally 

for different ACPs.  

The D-LinkNet (Zhou et al., 2018) was selected due to 

its effectiveness in handling complex structures and multi-

scale features. To further enhance feature representation, a 

coordinate attention (CA) (Hou et al., 2021) module was 

integrated into the center part of the original structure, and 

the single mapping between the encoder and decoder parts 

was substituted by richer skip connections (Xia et al., 

2021). 

3.1.3 Stratification strategy and Network model 

Based on the model’s raster outputs, the closed, discrete 

polygons are created through morphological optimization 

(i.e., edge enhancement and hole elimination) and contour 

acquisition. Ultimately, the Marching Cubes and Douglas-

Peucker algorithms (Li et al., 2023) were utilized to 

generate parcel vectors. 

After the vector generation, under-segmentation was 

recognized by the certain uniformity within the correct 

parcel’s interior. Eq. (1) was applied to assess the internal 

variation of each candidate parcel, utilizing the three bands 

of the VHR imagery as attribute features. Parcels with 

variability surpassing a predetermined threshold will 

undergo human-computer interaction and iterative 

optimization. Prior to these calculations, de-edge 

processing was performed to exclude any potential 

abnormal fluctuations in the edge pixels if 

allowed.

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
∑(𝑋−𝑋)

2

𝑛
(1) 

where 𝑋 and 𝑛 refers to the mean and number of pixels in 

a parcel. 

3.2 Parcel-wise crop classification 

As shown in Figure 3., The proposed framework for 

crop classification consists of two interrelated steps (i.e. 

feature construction and correlation establishment and 

crop identification), and here follows the detailed 

description of each step. 

Figure 3. Flowchart for parcel-wise crop identification. 

3.2.1 parcel-wise feature construction and correlation 

establishment 

The zonal statistical analysis was implemented based on 

the extracted ACPs. For each parcel, the pixels within its 

spatial boundary were gathered and statistical indicators 

(the median in this study) were calculated afterward to 

generate parcel-wise features. Both NDVI and VH features 

were constructed for the subsequent parcel-wise 

correlation construction and type inference. Additionally, 

the vegetation cover status calculated in 3.1 was also 

mapped to each parcel as a comprehensive indicator of 

environment characteristics.  

Subsequently, the correlation between parcels got 

judiciously constructed considering both environmental 

and temporal similarities. The former was reflected 

directly by the vegetation cover status, and the temporal 

similarity was evaluated based on the VH values utilizing 

the Dynamic Time Warping (DTW) algorithm. The 

similarity was defined as the inverse of the calculated 

DTW distance as follows. 

𝑆𝑠𝑒𝑞 =
1

1 + 𝐷𝑇𝑊(𝑠𝑡, 𝑠𝑖)
(2) 

where 𝑠𝑡 and 𝑠𝑖 denote the VH series for the target parcel

and its candidate neighbors respectively. Before 

computation, the original feature values are standardized 

to the 0-1 interval based on the minimum-maximum 

normalization. 

Both similarities take effect in sequence during the 

correlation construction, reducing gradually the searching 

space of the candidate neighbor set. 𝑘𝑒𝑛𝑣 parcels with the

closest vegetation cover status were picked out, where 

𝑘𝑒𝑛𝑣 is a quantity threshold set manually. Consequently,

𝑘𝑠𝑒𝑞  parcels with the most similar VH series were then

selected as the final neighborhood units, and the values 

were adopted as the correlation strength. 

3.2.2 Crop classification using attention-based model 

Based on the NLP transformers (Vaswani et al., 2017), 

this study uses Temporal Attention (TA) and 

Neighborhood Attention (NA) modules to explore 

4 of 8

Proceedings of the International Cartographic Association, 7, 5, 2025 | https://doi.org/10.5194/ica-proc-7-5-2025 
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. 
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.



dependencies from different angles. In NA, the target and 

neighbor parcels are treated as tokens with NDVI series as 

original features; in TA, time-point features are tokens and 

the full sequence is the context. A class token is added at 

the start, and all tokens are projected to a high-dimension 

tensor before multi-attention processing. The modules are 

cascaded to ensure reliable pattern recognition.  

NA and TA structures are defined by key parameters—

number of layers and attention heads—with optimal values 

varying by input features. For this study's 29-time-point 

NDVI features and up to five neighbors, NA and TA layers 

are set to 2, attention heads to 3 and 2 respectively, with 

embedding dimensions at 64 and hidden dimensions at 128. 

4. Results

4.1 Parcel extraction 

Four metrics were selected including overall accuracy 

(OA), Kappa coefficient, F-1 score, and the mask 

intersection over union (IoU) (see Eq. (3) to Eq. (6)). 

Besides, 𝐼𝑜𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦  metric, which comprises overlap and 

smoothness, was complemented for the individual 

assessment (see E q. (7) to Eq. (9)). 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3) 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

(4) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5) 

𝐼𝑂𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
(6) 

𝐼𝑂𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =  𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ×  𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 (7) 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐿𝑒𝑛𝑔𝑡ℎ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∩ 𝐵𝑢𝑓𝑓𝑒𝑟𝑔𝑟𝑜𝑢𝑛𝑑

𝐿𝑒𝑛𝑔𝑡ℎ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
(8) 

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =

{

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑔𝑟𝑜𝑢𝑛𝑑
, 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 > 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑔𝑟𝑜𝑢𝑛𝑑

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑔𝑟𝑜𝑢𝑛𝑑

𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
, 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 < 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠𝑔𝑟𝑜𝑢𝑛𝑑

(9)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , 𝐹𝑁  refers to the true positive, true 

negative, false positive, and false negative, respectively; 𝑃𝑜 

refers to the overall percent agreement, and 𝑃𝑒 refers to the 

hypothetical probability of change agreement; 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

and 𝑅𝑒𝑐𝑎𝑙𝑙  refers to 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 

𝑇𝑃

𝑇𝑃+𝐹𝑃
, respectively; 

𝐵𝑢𝑓𝑓𝑒𝑟𝑔𝑟𝑜𝑢𝑛𝑑 refers to an inward and outward zone around 

the parcel boundary with a specific radius. 

Fourteen validation samples, each 1000×1000 pixels, 

were manually annotated for the former four index, and 

600 parcels were selected with a buffer zone distance of 

0.8 meters (one pixel) for 𝐼𝑜𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 calculation. 

As illustrated in Table 1, the method utilized in this 

study outperforms the regular method based solely on the 

improved D-LinkNet, exhibiting enhancements of 

approximately 0.14 in the Kappa coefficient and 0.11 in 

IoU. Spatial heterogeneity in extraction performance is 

observed across the study area, with region 1 and region 2 

exhibiting notably higher accuracy. The extraction 

effectiveness for different parcel types generally aligns 

with the stratification order, suggesting that more effective 

separation of targets from backgrounds leads to improved 

extraction outcomes. However, there are discrepancies 

between the IoUtotal (total IoU for 14 validation samples) 

and the IoUaverage (average IoU for 14 validation samples), 

which stems possibly from the coexistence of small, easily 

overlooked parcels and large, prominent parcels—a 

characteristic feature particularly prevalent in garden 

landscapes. This heterogeneity in parcel size distribution 

may introduce bias in the global evaluation metrics used 

above, necessitating individual parcel-level precision 

assessment. The occurrence of low value or even outliers 

can be attributed to two primary factors: non-optimizable 

under-segmentation and incomplete region identification 

(Figure 4). Parcels with higher geometric complexity tend 

to exhibit lower 𝐼𝑜𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦. 

OA Kappa F-1

Scor

e

IoU
(total)

IoU
(average)

Regular 0.8

51

0.703 0.850 0.740 0.739 

Our 0.9

24

0.847 0.921 0.854 0.841 

Region 1 0.8

78

0.861 0.935 0.877 0.874 

Region 2 0.9

53

0.905 0.957 0.919 0.916 

Region 3 0.8

87

0.770 0.869 0.769 0.767 

Region 4 0.8

02

0.830 0.890 0.802 0.767 

Paddy 

fields

0.9

60

0.887 0.913 0.839 0.796 

Drylands 0.9

48

0.765 0.795 0.660 0.617 

Pepper 

gardens

0.9

87

0.937 0.944 0.895 0.664 

Other 

gardens

0.9

92

0.793 0.797 0.662 0.585 

Table 1. Evaluation results of the extraction. 
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Figure 4. The relationship between ground truth and predicted result, and examples of 𝐼𝑜𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 calculations on some parcels. 

In Jiangjin district, 1.23 million agricultural parcels 

were identified, comprising 0.50 million paddy fields, 0.45 

million drylands, 0.22 million pepper gardens, and 0.06 

million other gardens, covering 50.66, 51.88, 45.56, and 

11.08 million acres, respectively. The distribution analysis 

reveals that cultivated land and garden land constitute 

approximately 77% and 23% respectively of parcel count, 

a similar ratio reflected in total area. Notably, paddy fields 

exhibit a lower area-to-count ratio, indicating a 

predominance of smaller parcels, whereas pepper gardens 

display the opposite, suggesting larger, contiguous 

configurations (Figure 5). The areal distribution among 

paddy fields, drylands, and pepper gardens maintains an 

approximate 1:1:1 ratio, consistent with the collected 

statistics. Regarding the regional distribution, the ACPs 

are predominantly located outside of region 4, while region 

2 exhibits the highest concentration of all the parcel types, 

attributed to its favorable topographical conditions. There 

are minimal differences in both area and count of paddy 

fields and other gardens across region 1 to region 3, while 

region 2shows a marked predominance in dryland. Pepper 

gardens are concentrated in region 1 and region 2, with 

minimal presence in region 3. From these data, we can 

infer that the distribution of agricultural parcels in the 

study area exhibits certain regularities and characteristics: 

paddy fields and drylands are relatively evenly distributed, 

while pepper gardens and other gardens tend to form large-

scale concentrated areas. The occurrence of low value or 

even outliers can be attributed to two primary factors: non-

optimizable under-segmentation and incomplete region 

identification (Figure 4). Parcels with higher geometric 

complexity tend to exhibit lower 𝐼𝑜𝑈𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦. 

 
Figure 5. Distribution maps. (A) shows the spatial distribution of 

parcels and the detail maps, and (B) shows the statistical results 

of parcels. 

4.2 Parcel-based crop classification 

4.2.1 Parcel-wise feature reconstruction and 

correlation establishment 

The parcel-level features of NDVI and VH were derived 

based on zonal statistics, and sample points were matched 

to the corresponding parcels. The characteristic curves of 

various crop types are shown in Figure 6.  

 
Figure 6. Time-series feature curve of major crops in the study 

area. 

Based on the comprehensive consideration of 

environmental and time-series similarities, each parcel is 

matched with its most relevant ones. The threshold for the 
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correlation recognition is set at 0.7, with the maximum 

number of neighbors capped at 5.  

4.2.2 Crop classification and accuracy assessment 

Based on the parcel-wise time-series features and 

collected neighborhood information, the classification 

process was implemented using the attention-based 

models, as shown in Figure 7. The results were evaluated 

based respectively on the membership degree vectors and 

crop types utilizing the confusion matrix and information 

entropy, facilitating a holistic assessment of uncertainty 

distribution from individual to collective, categorical to 

spatial perspectives. 

Five metrics were selected including OA, Precision (𝑃), 

Recall (𝑅), 𝐹1 − 𝑠𝑐𝑜𝑟𝑒, and entropy (see Eq. (3), (5), (10) 

to (13)) for the accuracy assessment. 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11) 

𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
(12) 

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁  respectively denote the 

number of true positive, true negative, false positive, and 

false negative instances. Especially, the overall results of 

P, R, and F1 are calculated as the average of different 

classes weighted by the proportion of samples. 

𝐻(𝑋𝑖) = −∑ 𝑦𝑖
𝑘𝑙𝑜𝑔𝑝(𝑦𝑖

𝑘)
𝑘∈𝑛

(13) 

where 𝑦𝑖
𝑘  signifies the membership degree to category

𝑘(𝑘 = 1,2… , 𝑛) of an individual classification unit. 

Especially, compared to the accuracy derived from the 

confusion matrix over all the parcels, the entropy-based 

method provides additional spatial information on type 

uncertainty at the parcel scale, which aids in understanding 

the spatial distribution of errors. 

Figure 7. Overall results of parcel-wise crop classification, and 

detailed identification as well as uncertainty assessment for 

location A and B. 

The OA, P, R, F1, and uncertainty on the test set are 

shown in Table 2, indicating a credible classification 

performance and generalization ability in areas with 

diverse environmental conditions. 

Crop OA P R F1 Entropy 

rice - 0.985 0.930 0.956 0.409 

corn - 0.820 0.837 0.828 0.890 

lemon - 0.880 0.956 0.917 0.771 

others - 0.800 0.769 0.784 0.895 

overall 0.891 0.893 0.891 0.891 0.858 

Table 2. Evaluation results of the crop classification. 

A controlled experiment was conducted additionally to 

clarify the effectiveness of neighborhood information 

(Table 3). As the ratio of the training set to the test set 

decreases, the inference capability of the models gradually 

decreases. The introduction of neighborhood information 

may lead to a certain degree of accuracy improvement, 

regardless of the integration approach, and the accuracy 

improvement becomes increasingly evident as the 

proportion of the training set decreases. 

Proportion of train-set 

0.8 0.6 0.4 0.2 0.1 0.05 

Non-

neighbor 
0.853 0.848 0.814 0.770 0.727 0.135 

Neighbor 0.891 0.886 0.874 0.852 0.802 0.135 

Table 3. Overall accuracy under different neighborhood spaces 

of different training set size. 

5. Conclusion

The accurate mapping of agricultural cultivation parcels

and crop types is constantly a fundamental task in 

precision agriculture, which may face severe obstacles in 

mountainous areas with significant environment 

heterogeneity and complex farming patterns. In response, 

a novel parcel-wise framework was proposed in this work 

to settle both problems based on multi-source remote 

sensing datasets.  

Land parcels get precisely delineated utilizing a 

combined model of geographical priori information—

including heterogeneous cognition, hierarchical intra-

classes and parcel internal homogeneity—and a deep 

learning algorithm. The improved D-LinkNet model was 

deployed hierarchically for different land-use types under 

the constraints of geographical zones and the coarse 

agricultural spatial scope. Experimental results show that 

the proposed approach performed superiorly in traditional 

evaluation indices (e.g., OA, Kappa, F1, and IoU) and 

individual geometric precision of parcels. As a result, 

approximately 1.23 million parcels in Jiangjin and 0.55 

million parcels in Tongnan were extracted, respectively.  

The land parcels were then employed as the basic spatial 

units for feature construction and type inference, which 

constrains the analysis range within the agricultural space 

and provides identification results corresponding to real 

geographic objects. Each parcel is then correlated with its 

closest neighbors considering the environmental and 

temporal similarity, and classified subsequently by an 

attention-based network. Overall and individual metrics 

indicate a credible classification performance. Besides, the 

introduction of neighborhood information leads to a 

certain degree of accuracy improvement, especially as the 

proportion of the training set decreases, which is often the 

case for surface parameter estimations. 
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