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Abstract: In February 2021, Winter Storm Uri caused widespread power outages across Texas, affecting over 5 mil-
lion people and resulting in an estimated $190 billion in damages. To support extreme weather outage resilience, this
study introduces the Wide-and-Deep-Based Time Sequence Algorithm (WDTSA) for predicting power outage severity.
The model combines a deep bidirectional LSTM for time-lagged weather and outage history with a wide pathway for
weakly temporal features, enabling synergistic integration of heterogeneous inputs. This dual pathway design signifi-
cantly outperforms standard baselines, achieving 0.99 accuracy at coarse resolution (K=3) and 0.84 at fine granularity
(K=15), utilizing fewer parameters than expanded LSTM alternatives. Ablation and comparative analyses confirm that
the performance gains arise from specialized feature routing and non-additive synergy between input groups, growingly
so under complex classification tasks. County-level visualizations during Winter Storm Uri are provided to illustrate the
model’s ability to anticipate outage progression, offering actionable forecasts for emergency planning. While current
validation focuses on extreme events and does not offer spatial dependency modeling, the framework provides a compact
and flexible foundation for resilient grid operations and targeted response in potential weather-induced disruptions.

Keywords: Power outage prediction, Wide-and-Deep neural network, Bidirectional LSTM, Multi-class classification,
Extreme weather resilience, Spatiotemporal modeling, Feature routing, Geospatial Artificial Intelligence, GeoAI

1. Introduction

In February 2021, Winter Storm Uri severely impacted the
southern United States, affecting states such as Texas, Mis-
sissippi, and Louisiana (City of Austin & Travis, 2021).
The storm brought snow, ice, and ultralow temperatures,
resulting in large-scale power outages and an estimated
$190 billion in damages (Austin Water, 2021). Over five
million individuals experienced prolonged blackouts, with
many relying on rudimentary heating sources for survival
(City of Austin & Travis, 2021). According to the U.S. En-
ergy Information Administration, approximately 45% of
the System Average Interruption Duration Index (SAIDI)
is attributed to major events, with this percentage rising to
76% in 2020 and 72% in 2021 (EIA, 2022). These statis-
tics highlight the unyielding need for predictive systems
to anticipate and mitigate the impact of extreme weather-
induced outages.

Accurate, timely, and high-resolution power outage fore-
casting supports emergency preparedness by providing pri-
oritization for grid stabilization and resource deployment
(Zhang et al., 2020, Cheng et al., 2024, Li et al., 2024). A
growing body of Machine Learning (ML) work has pur-
sued this objective: random forest frameworks for hurri-
cane impacts across the Eastern United States (Taylor et
al., 2023), support vector and recurrent models for extra-
tropical storms in Northern Europe (Tervo et al., 2021),

and comprehensive surveys of hurricane studies (Fatima et
al., 2024). Yet, as these reviews and case studies repeat-
edly note, accuracy degrades when forecasts are required
at finer spatial granularity or longer lead times, and compu-
tational costs often exceed what is deployable in real time.

Several knowledge gaps motivate the present study.
First, most existing models channel heterogeneous inputs
through a single pathway, despite their markedly different
temporal signatures, while an observable accuracy drop oc-
curs at high class granularity (Fatima et al., 2024, Taylor
et al., 2023, Tervo et al., 2021). Secondly, early spatial
generalized linear mixed models demonstrated that neigh-
boring assets experience correlated fragility during storms,
but contemporary deep learners do not integrate spatial and
temporal dependencies, jeopardizing their reliability when
storm tracks deviate from the training climatology (Liu et
al., 2008). Finally, recent reviews focused on uncertainty
quantification highlight overconfident long-range forecasts
and the absence of probabilistic severity bounds (Arora and
Ceferino, 2023). Some ML studies indicate that opera-
tional adoption demands lightweight predictors to support
rapid conditional analyses (Hughes et al., 2024).

To address these gaps, this study proposes the
Wide-and-Deep Time-Sequence Algorithm (WDTSA), a
hybrid architecture that routes strongly temporal features
through a bidirectional long-short-term-memory deep
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branch while static or weakly temporal inputs flow
through a parallel wide layer. The fusion network contains
roughly 15,000 parameters and delivers county-level,
10-hour severity forecasts that outperform deeper recur-
rent models with simple designs by up to 57 percentage
points. With improved spatial granularity, temporal
depth, and computational efficiency, WDTSA provides a
practical tool for real-time resilient energy management.

2. Background

Power outages represent a growing threat to public safety
and economic stability in the United States. Electricity
consumption has increased significantly, rising from 0.3
trillion kWh in 1950 to over 4.1 trillion kWh in 2022
(EIA, 2023). While indirect economic losses are consid-
ered difficult to quantify, estimates suggest that outages
cost the U.S. economy $150 billion annually, with the
2021 Texas blackout alone accounting for $664 million
in direct losses (Bhattacharyya and Hastak, 2022, Energy,
2018, Shuai et al., 2018). From 2000 to 2021, 83% of ma-
jor outages were caused by weather-related events, includ-
ing winter weather (22%), tropical cyclones (15%), and se-
vere weather such as high winds and thunderstorms (58%)
(Central Climate, 2022, USDOE, 2023). The largest out-
age reports came from states including Texas, Michigan,
California, and North Carolina. During Uri, the Electric
Reliability Council of Texas (ERCOT) reported that gen-
eration deficits reached 34,000 MW from February 15–17,
constituting nearly half the winter peak grid load (FERC,
2021).

To forecast outages, researchers have employed both tradi-
tional statistical models and ML approaches. Generalized
additive models (GAMs) have been applied to grid-level
outage prediction using variables including wind speed,
precipitation, infrastructure, and land cover, outperforming
generalized linear models (GLMs) in hurricane contexts
(Han et al., 2009a,b). Subsequent work introduced random
forests that avoided the need for detailed grid component
inventories and emphasized the predictive value of histor-
ical outage data (Roshanak Nateghi, 2013, Raicharoen et
al., 2003).

Given the spatiotemporal nature of outages, time-series
techniques such as ARIMA have been used to model tem-
poral dynamics (Ho and Xie, 1998, Chen et al., 2008, Box
et al., 2015). However, Autoregressive Integrated Mov-
ing Average (ARIMA) assumes stationarity and often re-
quires differencing. In contrast, Long Short-Term Mem-
ory (LSTM) networks support nonlinear modeling of non-
stationary sequences without preprocessing and are suited
for outage prediction (Sherstinsky, 2020, Gonzalez and Yu,
2018).

Recent research further motivates this approach by high-
lighting the diverse datasets used in outage prediction, in-
cluding weather but also considering infrastructure, vege-
tation, and socioeconomic indicators. For example, Yang
et al. (2020) proposed an Event Severity Classification task
to manage data imbalance in outage events, achieving high
F1 scores. Xu et al. (2023) used nighttime satellite im-
agery and socioeconomic variables to detect outages and

assess environmental injustice. D’Amico et al. (2019) in-
corporated tree species into a hurricane outage prediction
model, identifying specific species associated with more
prominent outage risks.

Deep learning models, especially LSTMs, have been
shown to perform well in forecasting electric loads (Zheng
et al., 2017) and geomagnetic storm patterns (Tang et al.,
2020). The adaptability of LSTM to non-seasonal, non-
stationary sequences makes it a strong candidate for short-
term outage prediction. LSTM was introduced by Hochre-
iter and Schmidhuber (1997) to address the problem of
vanishing gradients in recurrent neural networks (RNNs)
and is widely used in time series modeling due to its gated
memory architecture. The original LSTM remains a com-
mon baseline (Greff et al., 2017, Van Houdt et al., 2020).
Deep bidirectional LSTM (DB-LSTM) architectures, in
which inputs are processed in both temporal directions
across multiple layers, have been shown to capture time
dependencies at different resolutions more effectively (Sak
et al., 2014). Still, LSTMs are susceptible to overfitting in
data-sparse environments (Gal and Ghahramani, 2016).

In the proposed architecture, the deep LSTM branch
processes temporally prominent features, while the wide
branch handles relatively static inputs. This dual-input
structure enables flexible modeling of diverse feature types
while supporting integration at the fusion layer. The fi-
nal model accommodates inputs with differing not only
shapes and scales but also distributional contexts, seeking
improvements in overall performance.

3. Methodology

3.1 Problem Formulation
The power outage prediction task is formulated as a multi-
class classification problem (e.g., based on different sever-
ity levels) as it better reflects the need for prioritiza-
tion. The objective is to predict the severity of future
outages using historical outage data and meteorological
measurements. Given a sequence of observations X =
{xt−9, . . . ,xt−1}, where each xt is a vector of lagged fea-
tures at time t, the model learns a mapping f : X → Y ,
with Y = {0,1, . . . ,K−1} representing K severity classes.
The Prediction Target is the percentage (pctg) of customers
without power at time t0, transformed as:

log_outage = log(1+pctg_outaget0)

Then discretized into K classes with equal-size quantiles:

qi =
i
K
, bi = Q(qi, log_outage)

thus class(y) = i such that bi ≤ log(1+ y)< bi+1.

Classification accuracy is used as the primary metric. The
models are compared with several baselines to be intro-
duced in more detail in section 3.4. Granularity level K
is varied to reflect different planning needs: low K for
strategic planning, medium K for the deployment of tac-
tical crews, and high K for real-time management. Syner-
gistic learning is used to hypothesize that routing features
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through specialized wide and deep pathways improves per-
formance beyond their summed contribution. This proce-
dure motivates the architectural fusion between temporal
and non-temporal features.

3.2 Data Description and Preprocessing

The dataset consists of timestamp-aligned outage and
weather data across Texas counties during the 2021 Win-
terstorm Uri period (Feb 13-23, 2021) from 207 unique
counties. Specifically, the weather data include the follow-
ing features (1) temperature, (2) dew points, (3) humidity,
(4) wind speed, (5) wind gust, and (6) pressure and are
matched with raw outage percentage data at a 3-hour inter-
val at the county level in Texas. From here, each sample
is constructed by extracting a 10-hour sliding window of
lagged outage and weather features, forming input vectors
such as:

rowt =
[
t f1
−9, . . . , t

f1
0 , t f2

−9, . . . , t
f2
0 , . . .

]
where t

f j
i represents the feature value at timestamp i of fea-

ture j.

The outage percentage at t0 is log-transformed and univer-
sally binned into K quantile-based classes using thresholds
from the entire dataset, thus ensuring highly balanced class
distributions across classification granularity. The dataset
is partitioned on a 4:1 stratified split with class balance
preservation but no temporal awareness. All preprocess-
ing steps are equally applied to training and validation data
without leakage. There are no missing values.

3.3 Wide-and-Deep Architecture

3.3.1 Architecture Design

Illustrated by Figure 1, the model follows a two-branch
architecture:

1. The deep path processes sequential features through
a bidirectional LSTM, followed by a dense layer,
batch normalization, and dropout.

2. The wide path handles static features through a dense
layer and batch normalization.

The two outputs are concatenated in a fusion layer and
passed through one additional dense layer to produce final-
class logits. The FEATURE GROUP element represents a
specific variable that directs how each feature is directed
into deep or wide channels, e.g. pressure measurement into
wide path, historical outage percentages into deep path,
etc.

3.3.2 Feature Routing Strategy

Features are routed to the deep or wide pathway based on
empirical evaluations. Those exhibiting strong temporal
dependencies are assigned to the LSTM path, while the
weakly time-correlated ones are routed to the wide path.
This strategy seeks to align data characteristics with pro-
cessing pathways and thus enhance representation. The
features are finally collected in a fusion layer in the final

Figure 1. WDTSA Architecture Diagram

stage to generate synergistic gains. In particular, the eval-
uation provides a routing preference that directs:

wind gust, pressure → wide path

temperature, dew point, humidity, wind speed,

outage pctg → deep path

This routing scheme is thereon held constant throughout
the study.

3.4 Comparative Models

To evaluate the contribution of architectural components
and input modalities, this study compares the Wide-and-
Deep model with a set of alternative models. The model-
reduction baselines are derived by restricting the input fea-
ture set, and there are also comparisons drawn between ar-
chitecturally different models.

• Pure LSTM: This model takes all features through a
bidirectional LSTM without a wide pathway, subse-
quently connected to a dense layer for predictions.

• Extended LSTM: This model builds upon the
Pure LSTM architecture by incorporating additional
LSTM units and an extra dense layer, resulting in a
significantly larger number of parameters.

• Linear Model: This model implements a simple Lo-
gistic Regression classifier. Rationales and analyses
are given in Section 4.4.

• Outage Model: This simplified variant uses only
lagged outage percentage values as input, routed
through the LSTM path.

• Weather Model: This simplified variant excludes all
outage-related features, relying solely on weather
variables routed through their respective paths. The
model evaluates the contribution of the meteorologi-
cal input to the decision.

• T1 Model: This simplified variant uses only the t−1
value of outage percentage as input, routed through
the deep path. It tests how much short-term persis-
tence contributes to prediction performance.
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3.5 Experimental Framework

Additional analyses, including a temporal ablation study
and spatiotemporal visualization, are presented in Section
4.7 and Section 4.9, respectively. These use consistent ar-
chitecture and training protocols unless otherwise noted.
Specifically, all models are trained using the Adam opti-
mizer with a learning rate of 10−3 and a mini-batch size
of 32 (Kingma and Ba, 2015). Early stopping is applied
based on validation accuracy to prevent overfitting. Cross-
entropy loss is used for multi-class classification. All mod-
els use a 10-hour input window (t−9 to t0) for each fea-
ture. The LSTM components have 16 hidden units per di-
rection, and all dense layers use 64 units with ReLU or
Leaky ReLU activations, followed by batch normalization
and dropout.

Model performance is assessed using classification accu-
racy on the validation set. To evaluate robustness across
different levels of task granularity, experiments are con-
ducted with multiple values of K (the number of severity
classes), selected from the set {3,5,7,10,15}. Random
seeds are set to ensure reproducibility. Additionally, the
data split, quantile thresholds, and feature routing configu-
rations are kept consistent across all model comparisons.

4. Results

All models follow the shared training and evaluation pro-
tocol described in Section 3.5. Validation accuracy is re-
ported using the best model checkpoint per run with a 30-
epoch cap.

4.1 Multi-Class Performance Comparison

Validation accuracy across different numbers of classifica-
tion bins is summarized in Table 1 and illustrated in Fig-
ure 2. As the number of classes increases, accuracy de-
creases across all models. However, the Wide-and-Deep
model maintains substantially higher performance across
all values of K, with accuracy remaining above 0.84 at the
finest granularity of 15 classes.

Table 1. Validation accuracy by model and number of
classes (K).

K W&D Outage Weather T1 P-LSTM

3 0.994 0.861 0.637 0.865 0.855
5 0.970 0.784 0.448 0.787 0.725
7 0.934 0.683 0.351 0.688 0.640
10 0.896 0.611 0.272 0.618 0.502
15 0.844 0.543 0.184 0.547 0.391

Several notable patterns emerge from these results. First,
the Outage and T1 models perform remarkably similarly
across all class counts, with differences of less than 0.015.
This suggests that recent outage history (t-1) contains most
of the predictive signal, with potentially minimal incre-
mental value from earlier time points. Second, the Weather
model shows the steepest accuracy degradation as K in-
creases, dropping from 0.637 at K = 3 to 0.184 at K =
15. This indicates that while weather variables contribute

meaningful signal, they struggle in the classification task
when employed alone without further modeling complex-
ity.

Figure 2. Validation accuracy across number of classes for
each model variant.

Noticeably, despite access to the complete feature set, the
Pure LSTM model substantially underperforms the Wide-
and-Deep architecture across all classification granularity.
The performance gap widens dramatically with task com-
plexity, from 0.139 percentage points at K = 3 to 0.453 at
K = 15. This suggests that routing all features through a
single sequential pathway creates a representational bottle-
neck that becomes increasingly problematic as the classifi-
cation task grows more complex.

4.2 Architecture Advantage Analysis

The relative performance gain of the Wide-and-Deep
model over the Pure LSTM architecture is presented in
Figure 3. The absolute accuracy difference increases con-
sistently with task granularity, from 0.139 at K = 3 to 0.453
at K = 15. This widening margin suggests that architec-
tural advantages become more pronounced as the classifi-
cation task grows more complex.

Figure 3. Accuracy difference between Wide-and-Deep
and Pure LSTM across class granularity.

The advantage grows somewhat linearly with increasing
class counts. While the Wide-and-Deep model maintains
relatively stable performance across granularity (decreas-
ing from 0.994 to 0.844), the Pure LSTM shows substan-
tially steeper degradation (from 0.855 to 0.391). This di-
vergent behavior highlights the structural limitation of pro-
cessing heterogeneous features through a single pathway
when attempting fine-grained discrimination tasks.

Proceedings of the International Cartographic Association, 7, 6, 2025 | https://doi.org/10.5194/ica-proc-7-6-2025 
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. 
This contribution underwent single-blind peer review based on submitted abstracts. © Author(s) 2025. CC BY 4.0 License.



5 of 9

4.3 Model Capacity vs. Architectural Design

To investigate whether the Wide-and-Deep advantage
stems from greater model capacity, this study compared
it against an Expanded LSTM model with 43,139 parame-
ters—nearly three times more than the Wide-and-Deep ar-
chitecture’s 15,107 parameters. Table 2 presents the results
of this comparison.

Table 2. Comparison between Wide-and-Deep and an ex-
panded LSTM model with 2.9x more parameters.

K W&D Expanded LSTM Advantage
(15,107) (43,139)

3 0.994 0.869 0.125
5 0.970 0.748 0.223
7 0.934 0.666 0.268

10 0.896 0.564 0.332
15 0.844 0.276 0.568

Despite having only 35% of the parameters, the Wide-
and-Deep model significantly outperforms the Expanded
LSTM across all classification granularity. The perfor-
mance gap widens dramatically from 0.125 at K = 3 to
0.568 at K = 15. This provides evidence that the architec-
tural advantage stems from the dual-pathway design rather
than model capacity, or equivalently, feature routing could
bring more merits than raw parameter count for this pre-
diction task.

4.4 Comparison Against Full Linear Model

Since the formulation of the problem is based on quan-
tile borders, it is natural to investigate how a linear logistic
classifier would work on seemingly clear borders. To eval-
uate the importance of nonlinear modeling capacity, this
study compares the Wide-and-Deep model against a full
linear baseline trained on the same input features. Table 3
reports classification accuracy across K ∈ {3,5,7,10,15}
and highlights the W&D advantage.

Table 3. Comparison of Wide-and-Deep model vs. full
linear classifier.

K W&D Linear Advantage

3 0.994 0.990 0.004
5 0.970 0.958 0.012
7 0.934 0.890 0.044

10 0.896 0.772 0.124
15 0.844 0.687 0.157

The performance gap grows sharply with task complexity:
from 0.004 at K = 3 to 0.157 at K = 15. These results sug-
gest that the Wide-and-Deep model captures higher-order,
nonlinear interactions that are increasingly important for
accurate classification as granularity increases.

4.5 Feature Contribution Analysis

Figure 4 quantifies the contribution of features in the W&D
model. The accuracy gain attributed to all features in-
creases significantly with class granularity, reaching an

asymptotic bound after K = 10, while the contribution
of extended outage history relative to a t1 model remains
nearly flat. Outage history contributes the largest share
across all values of K.

Figure 4. Estimated contribution of input components as a
function of class granularity.

4.6 Synergistic Processing Evidence

The Wide-and-Deep model is evaluated against an adjusted
additive baseline, calculated by summing the accuracies of
the Outage-Only and Weather-Only models and subtract-
ing the random guess rate (1/K), in accordance with the
synergy hypothesis. Table 4 presents the measured accu-
racy of the Wide-and-Deep model and the corresponding
baseline, along with the resulting synergy margin.

Table 4. Synergistic contribution of the Wide-and-Deep
model compared to adjusted additive baseline.

K W&D Acc Outage + Weather - 1/K Synergy

3 0.994 1.165 −0.171
5 0.970 1.032 −0.062
7 0.934 0.891 0.043

10 0.896 0.783 0.113
15 0.844 0.661 0.183

The synergy margin becomes positive at K = 7 and in-
creases with granularity, reaching a maximum of 0.183 at
K = 15. This trend supports the hypothesis that specialized
processing pathways facilitate non-additive feature interac-
tion, particularly under higher task complexity. The nega-
tive evaluation when K=3 and 5 is not indicative of nega-
tive synergies but is due to high outage + weather model
performance baselines. This interpretation is also sup-
ported by the feature contribution analysis (Figure 4). As
K increases, the relative contribution of both outage history
and weather variables increases despite the overall drop in
classification accuracy, indicating predictive utility is only
maintained when these inputs are fused. Therefore, the
Wide-and-Deep architecture does not merely combine in-
puts but integrates them in a way that becomes increasingly
important as the classification task becomes more difficult.

4.7 Temporal Ablation Analysis

To investigate the influence of historical window size on
prediction accuracy, a temporal ablation study is conducted
with a fixed granularity of K = 10 classes and a varying
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maximum time lag from t −1 to t −9. Table 5 presents the
validation accuracies across different temporal windows.

Table 5. Performance comparison across different tempo-
ral windows (K=10).

Max Lag Accuracy Deep Features Wide Features

t −1 0.929 9 4
t −3 0.883 19 8
t −5 0.891 29 12
t −7 0.911 39 16
t −9 0.888 49 20

The highest accuracy (0.929) was achieved using only the
most recent time step (t−1), potentially suggesting that the
immediate past contains sufficient information for short-
term outage prediction. The performance pattern is non-
monotonic with a U-shape and a secondary peak at t − 7
(0.911). This secondary peak may suggest weekly patterns
in power usage or grid conditions, though the relatively
small differences between configurations, i.e. maximum
spread of 0.046 points, suggest that the specific time win-
dow is considerably less influential than the architectural
design itself. These results should be interpreted with ap-
propriate caution, as the ablation experiments were limited
to 30 training epochs per configuration and represent single
runs rather than averages across multiple initializations.

4.8 Summary of Findings

Confusion matrices for K = 3, 5, 7, 10, and 15 are shown
in Figures 5–9. For low values of K, misclassifications are
mostly between adjacent severity classes. As K increases,
the error becomes more diffuse, with confusion spanning
multiple non-adjacent classes. Note that due to nondeter-
ministic behavior, the validation accuracies and errors pre-
sented are slightly different from those previously reported
without misrepresenting significant patterns.

Figure 5. Confusion matrix for K = 3 (Accuracy: 0.9904).

In summary, across all classification granularity, the Wide-
and-Deep model consistently achieves the highest valida-
tion accuracy, with performance remaining strong at in-
creasing values of K. The Outage-only and T1-only base-
lines yield similar results, highlighting the strong short-
term temporal persistence in outage data. In contrast, the
Weather-only baseline contributes less predictive power in-
dividually but complements outage history with synergistic
behavior when combined. The synergy margin increases

Figure 6. Confusion matrix for K = 5 (Accuracy: 0.9584).

Figure 7. Confusion matrix for K = 7 (Accuracy: 0.8895).

with task complexity, supporting the architectural design
hypothesis. Confusion matrices show tight class adherence
at low K and diffuse errors at higher resolutions.

4.9 Spatiotemporal Visualization of Outage Forecasts

To provide references for the real-world applicability of
the proposed model, map visualization of predicted outage
severity across Texas counties during the days leading up
to the peak of Winter Storm Uri is provided. These visu-
alizations are generated using the best-performing Wide-
and-Deep model checkpoint for K = 10, trained under
the same architecture and hyperparameter configuration as
the previous comparative experiments, with extended 100
epochs and multiple runs.

Figure 10 displays predicted outage class distributions for
February 16 to 21, 2021, reflecting how the model fore-
casts evolved as the storm progressed. Higher class indices
correspond to more severe outages, based on quantile-
transformed outage percentages.

The spatial progression of predicted outages aligns with
the timeline of storm escalation, showing increasing inten-
sity across central and southeastern Texas counties. These
visualizations highlight the utility of the Wide-and-Deep
framework in producing interpretable geospatial forecasts
that can support operational decision-making during ex-
treme weather events.

5. Discussion

5.1 Architectural Impact and Synergistic Processing

The empirical findings demonstrate that model architec-
ture plays a critical role in determining predictive perfor-
mance. The Wide-and-Deep model, with approximately
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Figure 8. Confusion matrix for K = 10 (Accuracy:
0.7715).

Figure 9. Confusion matrix for K = 15 (Accuracy:
0.6871).

15,000 parameters, significantly outperforms both a stan-
dard Pure LSTM (5,635 parameters) and an Expanded
LSTM (43,139 parameters). The performance gap not only
persists but grows with classification granularity, reaching
a 0.568 difference at K = 15 when compared to the Ex-
panded LSTM. This outcome indicates a representational
limitation in single-pathway models when processing het-
erogeneous inputs. The Wide-and-Deep model achieves
higher accuracy with fewer parameters by routing inputs
through task-appropriate processing streams.

The design of the Wide-and-Deep framework is guided by
the hypothesis that separating temporal and non-temporal
feature processing facilitates richer representations. Em-
pirical routing of input variables confirms that time-
sensitive features, such as outage history, benefit from se-
quential modeling, whereas more static features, such as
barometric pressure or wind gusts, perform better under
non-temporal transformations. Evidence for synergistic
processing is presented from comparisons with summed
baselines. The synergy margin becomes positive at K = 7
and increases with task complexity. This pattern suggests
that the Wide-and-Deep model captures non-trivial inter-
actions between input types.

5.2 Operational Relevance and Spatial Generaliza-
tion

The proposed model demonstrates significant practical
value in outage forecasting tasks. Its performance re-
mains robust across a wide range of classification granu-
larity, supporting a flexible tiered-response framework for
operational planning. At K = 3, accuracy exceeds 99%,

(a) Feb 16 (b) Feb 17

(c) Feb 18 (d) Feb 19

(e) Feb 20 (f) Feb 21

Figure 10. Predicted outage severity class across Texas
counties during Winter Storm Uri, using Wide-and-Deep
model with K = 10.

supporting strategic resource allocation, while at K = 15,
the model maintains 84% accuracy, offering fine-grained
resolution suitable for real-time triage and emergency re-
sponse. High predictive fidelity indicates the model’s po-
tential utility in real-world settings, such as dispatching
crews, managing grid load, and informing public advi-
sories during weather-induced disruptions.

5.3 Limitations and Future Research Directions

Several avenues remain promising for future research.
First, the current approach does not account for spatial de-
pendencies; incorporating techniques such as graph neu-
ral networks or spatial autocorrelation constraints could
improve predictive performance by leveraging geographic
structure. Second, the model employs a fixed input win-
dow size across all features, but allowing dynamic window
sizes may better capture temporal heterogeneity and en-
hance model synergy. Third, although the model demon-
strates strong performance, it lacks explicit uncertainty
quantification, an important consideration for applications
in high-stakes decision-making contexts.

A limitation is that the current model evaluation focuses
primarily on extreme weather scenarios. The model’s false
positive rate during normal weather conditions remains
untested due to data acquisition challenges. The extensive
computational and API resources required to collect histor-
ical weather data for all 254 Texas counties over extended
non-event periods rendered comprehensive testing imprac-
tical within the study’s scope. Establishing the model’s
specificity by verifying its ability to correctly identify non-
emergency conditions and thus preventing alert fatigue and
resource misallocation is an important next step.
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Ethical considerations should also be addressed when de-
ploying predictive systems in critical infrastructure con-
texts. Historical data may encode systemic disparities,
and without appropriate oversight, model-driven decisions
could perpetuate existing inequities. Future implementa-
tions should consider including transparent model gover-
nance, domain-informed validation, and explainability en-
hancement mechanisms for community feedback to ensure
fair and responsible use.

6. Conclusion

This study presents a Wide-and-Deep neural network ar-
chitecture for predicting power outage severity using in-
puts from lagged weather and outage history data on an
hourly level. An empirically informed routing strategy
assigns features to temporal and non-temporal processing
paths and facilitates complementary, synergistic represen-
tation learning.

Through systematic evaluation across classification gran-
ularity, the proposed architecture demonstrates consistent
improvements over baseline models, including those re-
stricted to outage history, weather data, or short-term lag
inputs. The architecture supports synergistic feature inte-
gration, proven by performance gains relative to additive
input baselines.

The framework is modular and adaptable to different fore-
casting horizons and regional contexts. All code and data
processing routines are implemented with reproducibility
and support extension to broader grid resilience and risk
management applications.

Data Availability

Outage data are publicly available from the ORNL
EAGLE-I platform. Weather data were ob-
tained via the commercial WeatherAPI service
and cannot be redistributed. A processed dataset
(train_data_reconstructed.csv) and associated
code will be made available at https://github.com/jikun-
tamu/WDTSA.
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