Big data; sensor networks and remotely-sensed data for mapping; feature extraction from lidar
Keywords: Big data, UAV, Sensor,Networks, Lidar, LAPCAS
Abstract. Unmanned aerial vehicles (UAVs) can be used for mapping in the close range domain, combining aerial and terrestrial photogrammetry and now the emergence of affordable platforms to carry these technologies has opened up new opportunities for mapping and modeling cadastral boundaries. At the current state mainly low cost UAVs fitted with sensors are used in mapping projects with low budgets, the amount of data produced by the UAVs can be enormous hence the need for big data techniques’ and concepts. The past couple of years have witnessed the dramatic rise of low-cost UAVs fitted with high tech Lidar sensors and as such the UAVS have now reached a level of practical reliability and professionalism which allow the use of these systems as mapping platforms. UAV based mapping provides not only the required accuracy with respect to cadastral laws and policies as well as requirements for feature extraction from the data sets and maps produced, UAVs are also competitive to other measurement technologies in terms of economic aspects. In the following an overview on how the various technologies of UAVs, big data concepts and lidar sensor technologies can work together to revolutionize cadastral mapping particularly in Africa and as a test case Botswana in particular will be used to investigate these technologies. These technologies can be combined to efficiently provide cadastral mapping in difficult to reach areas and over large areas of land similar to the Land Administration Procedures, Capacity and Systems (LAPCAS) exercise which was recently undertaken by the Botswana government, we will show how the uses of UAVS fitted with lidar sensor and utilizing big data concepts could have reduced not only costs and time for our government but also how UAVS could have provided more detailed cadastral maps.